

Oregon International Port of Coos Bay Proposed Section 204(f)/408 Channel Modification Project

Sub-Appendix 5

Geotechnical Data

March 2024 Draft

EXECUTIVE SUMMARY

The Oregon International Port of Coos Bay (OIPCB or Port) seeks to modify the Coos Bay, Oregon Federal Navigation Channel (FNC); the channel modifications assessed in this evaluation are referred to as the Proposed Alteration (PA). The Port proposes navigation channel improvements to the FNC. The Proposed Alteration (PA) generally consists of widening the channel from 300 feet (ft) to 450 ft and deepening it from a depth of -47 ft to -57 ft Mean Lower Low Water (MLLW) from RM -1.0 to RM 0.0 and deepening it from a depth of -37 ft to -45 ft MLLW from RM 0.0 through approximately RM 8.2.

This Sub-Appendix 5 presents the geotechnical data collected as part of the geotechnical investigation program completed for the Coos Bay, Oregon, Section 204(f) Channel Modification Project. The geotechnical data presented in this report were collected to supplement previous geotechnical and geophysical exploration programs and further evaluate the strength and material characteristics of rock and overlying materials located within and adjacent to the proposed dredge prism.

Previous geotechnical programs consulted include United States Army Corps of Engineers (USACE) geotechnical investigations completed for Coos Bay channel-dredging projects in 1974 and 1995. David Evans and Associates, Inc. (DEA) collected geophysical survey data in 2005, multibeam bathymetric and sub-bottom profiler data in 2008, and additional geophysical survey data in 2016 and 2017. Arc Surveying & Mapping, Inc. (Arc) completed a bathymetric and electrical resistivity survey of the channel in 2023 in an effort to better characterize materials within the dredge prism. GHD utilized the subsurface conditions presented in this GDR to supplement the geophysical data and provide estimates of rock within the channel (see Sub-Appendix 2 – Geophysical Assessment and Reports).

The geotechnical investigation program was completed in three primary phases: a 2010 to 2011 phase that included 11 overwater borings, laboratory testing, and preparation of a draft geotechnical data report; a 2016 to 2017 phase that included 28 overwater borings, three upland borings, 56 jet probes, one diving exploration, and laboratory testing; and a 2023 to 2024 phase that included 15 overwater borings, laboratory testing, and preparation of this geotechnical data report, which combines the results of the 2010 to 2011, 2016 to 2017, and 2023 to 2024 geotechnical investigation phases. This GDR describes the work accomplished, provides a summary of subsurface conditions at the project site, and presents geotechnical data and information related to the investigations.

Three geologic units were encountered within the project area: sandstone and mudstone/siltstone of the Empire Formation, siltstone of the Bastendorff Formation, and sandstone of the Coaledo Formation. Based on our observations during drilling and our interpretation of available geologic information, the Empire Formation is estimated to be located within the channel between approximately RM 0.8 and RM 3.9, the Bastendorff Formation between approximately RM 3.9 and RM 5.8, and the Coaledo Formation between approximately RM 5.8 and the upstream extent of the project area at approximately RM 8.2. To date, no borings have been completed in the channel west of approximately RM 0.7. Based on our observations during drilling, the Empire Formation sandstone is typically dark gray, fresh, extremely soft to soft, and closely to widely fractured with horizontal to inclined jointing. The Empire Formation mudstone/siltstone is typically dark gray, extremely soft to very soft, with horizontal to inclined jointing. The

Bastendorff Formation siltstone is typically dark gray, fresh, extremely soft to very soft, and very closely to closely fractured with horizontal to nearly vertical jointing and inclined bedding. The Coaledo Formation sandstone is typically gray, fresh, soft to hard, and closely to widely fractured with inclined jointing. The preceding bedrock geologic formations are overlain by sediment of varying thickness within the project area.

In general, the explorations disclosed subsurface conditions similar to previous exploration programs. The 1974 USACE investigation approximated the contact between the Bastendorff and Empire formations at RM 3; however, as indicated above, the contact is estimated to be near RM 4. Additionally, the 1974 USACE investigation approximated the contact between the Bastendorff and Coaledo formations at RM 5; however, as indicated above, the contact is estimated to be near RM 6.

Table of Contents

EXEC	CUTIVE SUMMARY	i
1.	INTRODUCTION	1
1.1	Overview	1
1.2	Study Area Description	1
1.3	Existing Navigation Channel	5
1.4	Description of Proposed Action	6
1.5	Previous Studies	10
1.6	Report Organization	11
2.	SITE DESCRIPTION	
2.1	Bathymetry	13
2.2	Regional Geologic Setting	13
2.3	Local Geologic Conditions	13
2.4	Regional Tectonic and Seismic Setting	14
3.	SUBSURFACE CONDITIONS	
3.1	General	
3.2	Soil and Rock	26
4.	DISCUSSION	
5.	LIMITATIONS	33
6.	REFERENCES	34

Appendices

APPENDIX A: OIPCB FIELD EXPLORATIONS

APPENDIX B: LABORATORY TESTING

APPENDIX C: USACE 1974 FIELD EXPLORATIONS

APPENDIX D: USACE 1994 FIELD EXPLORATIONS AND LABORATORY TESTING

APPENDIX E: KENNETH L. FINGER, PH.D., CONSULTING PALEONTOLOGIST,

MICROPALEONTOLOGICAL EXAMINATION

List of Tables

Table 1-1 Channel Footprint for Existing Authorized Project and 2023 PA	7
Table 1-2 Channel Depth for Existing Authorized Project and 2023 PA	8
Table 3-1 Overwater Boring Locations and Elevations	16
Table 3-2 Upland Boring Locations and Elevations	21
Table 3-3 Overwater Jet Probe Locations and Elevations	22
Table 3-4 Diving Exploration Location and Elevation	26

List of Charts

Chart 3-1 Histogram of UCS Values for Coaledo Sandstone, Bastendorff Siltstone, and Empire	
Sandstone Formations	30

List of Figures

Figure 1-0 Project Vicinity Map, Lower Bay

Figure 1-1 Project Vicinity Map, Upper Bay

Figure 1-2 Summary of Proposed Alteration

Figure 1-3 Summary of the 2023 Proposed Alteration

Figures 2-0 to 2-6 Exploration Site Plans

Figure 3-0 Regional Geologic Map

Figure 4-0 Stratigraphic Column of Geologic Units

Figure 5-0 Schematic Geologic Cross Section, PA Channel Centerline

Figure 6-0 Tectonic Setting Summary

ACRONYMS AND ABBREVIATIONS

ac Acres

ARC Arc Survey & Mapping, Inc.
AMD Advanced Maintenance Dredging

ASTM American Society of Testing and Materials

CSZ Cascadia Subduction Zone

DEA David Evans and Associates, Inc.

DMMP Dredged Material Management Plan

EIS Environmental Impact Statement

ft Feet/Foot

FNC Federal Navigation Channel

FY Fiscal Year

GDR Geotechnical Data Report

Global Global Diving and Salvage, Inc.
GRI Geotechnical Resources, Inc.

lb Pound

Joint Airborne Light Detection and Ranging Bathymetry Technical Center of

JALBTCX Expertise

Knutson Towboat Company
LiDAR Light Detection and Ranging

LSB Log Spiral Bay

MCR Mouth of the Columbia River

mi Miles

MLLW Mean Lower Low Water

N SPT Blow Counts

NOAA National Oceanic and Atmospheric Administration

OIPCB or Oregon International Port of Coos Bay

Port

PA Proposed Alteration
Pcf Pounds per Cubic Foot
PPX3 Post Panamax Generation 3
Psi Pounds Per Square Inch
RFP Roseburg Forest Products

RM River Mile

RQD Rock Quality Designation SPT Standard Penetration Test

UCS Unconfined Compressive Strength

WCC West Coast Contractors

ACRONYMS AND ABBREVIATIONS

USACE U.S. Army Corps of Engineers WRDA Water Resources Development Act

WRRDA Water Resources Reform and Development Act

WSSC Western States Soil Conservation, Inc.

1. INTRODUCTION

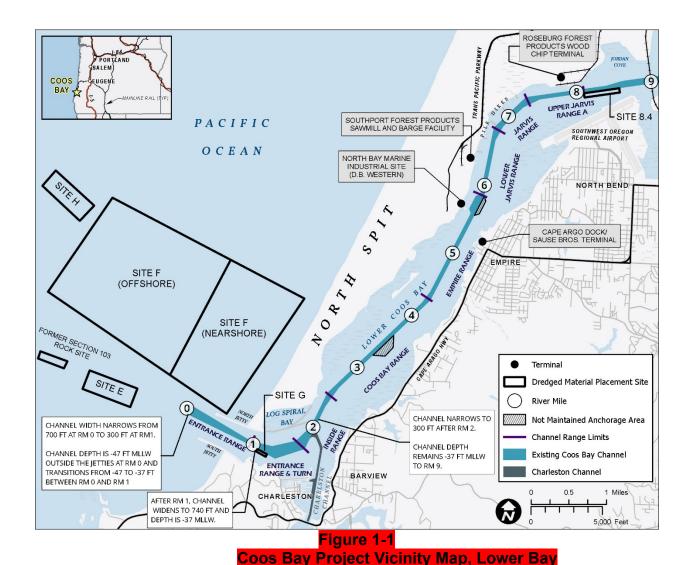
The Oregon International Port of Coos Bay (OIPCB or Port) is home to the second largest deep-draft coastal harbor between San Francisco and the Puget Sound, based on the tonnage of cargo transported through the Port. Access to the Port's facilities is provided by the Coos Bay Federal Navigation Channel (FNC), a federal channel that was first dredged in the early 1900s. The channel was last improved in 1998, when the channel was deepened by 2 feet (ft) from 35 ft to 37 ft. Since 1998, vessels calling at the Port have substantially increased in size.

1.1 Overview

The OIPCB proposes a Pacific Coast Intermodal Port (PCIP) project at Coos Bay, Oregon. The PCIP consists of integrated elements that would link freight arriving by container ship to the Port to Class 1 rail networks in Oregon. The in-water component of the project includes the deepening and widening of the existing FNC for deep-draft container vessels. In support of that work, the Port is conducting economic, engineering, and environmental studies preparatory to improving the Federal Navigation Project. These investigations are being conducted under the authority granted by Section 204 of the Water Resources Development Act (WRDA), 1986, as modified by Section 1014 of the Water Resources Reform and Development Act (WRDA), 2014. This action will require approval by the U.S. Army Corps of Engineers under Section 14 of the Rivers and Harbors Appropriation Act of 1899, 33 United States Code 408, to modify the Federal Navigation Project. The Section 204/408 Report and Environmental Impact Statement (EIS) will propose modifications to the Coos Bay Navigation Channel in Coos County, Oregon, to accommodate larger deep draft vessels and provide local, state, and federal economic benefits. The USACE, Portland District, is presumed to be the lead federal agency for the EIS in cooperation with the U.S. Department of Transportation's Federal Rail Administration.

The purpose of this report is to present geotechnical data collected as part of the geotechnical investigation program completed for the Coos Bay, Oregon, Section 204(f) Channel Modification Project. The geotechnical data presented in this report were collected to supplement previous geotechnical and geophysical exploration programs and further evaluate the strength and material characteristics of rock and overlying materials located within and adjacent to the proposed dredge prism.

1.2 Study Area Description


Coos Bay is located in Coos County, Oregon, on the southern Oregon coast, about 200 miles (mi) south of the mouth of the Columbia River (MCR) and 445 mi north of San Francisco Bay. It is the navigational approach to Charleston, Empire, North Bend, Glasgow, Coos Bay, and Eastside (Figure 1-0 and Figure 1-1). The bay is formed by the junction of Isthmus Slough, Coos River, South Slough, Kentuck Slough, Haynes Slough, and Winchester Creek and is located at the foot of the Coast Range. Deep-draft navigation is limited to the lower 15 mi of the estuary.

The surface area of the Coos Bay estuary is about 12,000 acres (ac) (about 19 square mi). Tidelands, located from River Mile (RM) 0 through 15, comprise 20 percent to 30 percent of the estuary area. The inlet to the estuary, referred to as the Entrance Channel, is fully exposed to waves.

The Coos Bay estuary drains directly into the Pacific Ocean. The nearshore zone adjacent to the Entrance Channel is composed of fine- to medium-grained sediments and intermittent rock outcroppings. The coastal shelf within 8 mi of the inlet has a roughly 100:1 (Horizontal: Vertical) slope. Cape Arago, a headland that limits sediment transport and marks the southern boundary of the littoral cell, is located 2.5 mi south of the inlet.

The topography of the lower Coos River area is a combination of rugged mountain terrain, extensive sand dunes adjacent to the ocean, and relatively flat pasture land along the river. The terrain of the area is quite rugged because the mountains are relatively young, as denoted by the typical narrow, sinuous valleys and steep side slopes. Relief varies from sea level to just under 3,000 ft; however, most of the land lies between 500 ft and 1,500 ft in elevation.

Geotechnical investigations indicate the subsurface conditions in the channel typically vary from relatively clean sand to siltstone and sandstone sedimentary rock. The sedimentary rock is present near the mudline from about RM 2 to RM 6 and at Guano Rock from about RM 0.7 to RM 0.9.

Sub-Appendix 5: Geotechnical Data March 2024

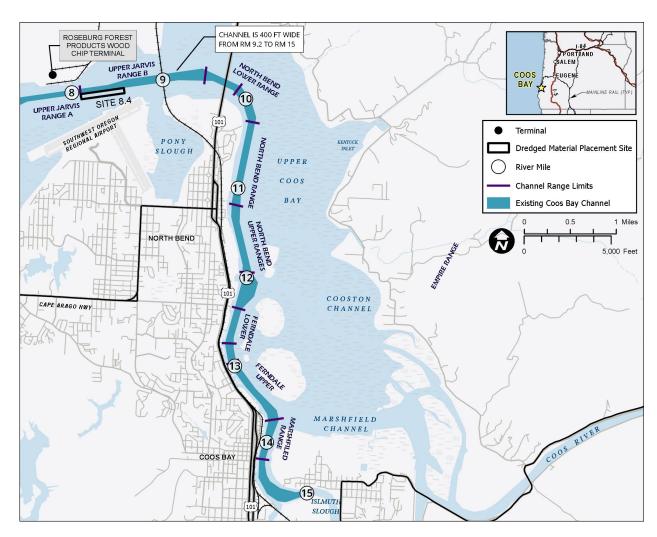


Figure 1-2
Coos Bay Project Vicinity Map, Upper Bay

1.3 Existing Navigation Channel

The Coos Bay Federal Navigation Project was first authorized by the Rivers and Harbors Appropriation Act of March 3, 1899, and has been subsequently modified in 1919, 1937, 1951, 1952, 1979, and 1998. The 1979 project represents the completion of the 1970 authorized work, which allowed the USACE to deepen and maintain the Entrance Channel at -45 ft Mean Lower Low Water (MLLW) and the inner channel to -35 ft MLLW. The most recent project modification was authorized in the fiscal year (FY) 1996 Energy and Water Development Appropriations Act, Public Law 104-46, which provided for deepening the channel by 2 ft to -47 ft MLLW from the ocean entrance to Guano Rock at RM 1, and to -37 ft MLLW from RM 1 to RM 15. Public Law 104-46 also provided for deepening the turning basin at RM 12 by 2 ft and expanding it by 100 ft, from 800 ft by 1,000 ft to 900 ft by 1,000 ft.

The U.S. Army Corps of Engineers (USACE) Federal Navigation Project consists of the following federally authorized elements:

- North Jetty (9,600 ft long) and South Jetty (3,900 ft long), located on either side of the Entrance Channel, include the two relic structures that extend from the root of the North Jetty, one of which extends into Log-Spiral Bay (LSB) and the other of which extends into the estuary.
- An Entrance Channel with an authorized depth of -47 ft MLLW, which decreases from a width of 700 ft at RM 0 to a width of 300 ft at RM 1.
- An inner channel (from RM 1 to RM 15) that has an authorized depth of -37 ft MLLW, a width of 300 ft from RM 1 to RM 9, and a width of 400 ft from RM 9 to RM 15.
- Two (2) turning basins, both of which are 1,000 ft long. The first is located at RM 12 and has a width of 900 ft. The other, located at RM 14, has a width of 730 ft. Both have a depth of 37 ft MLLW, consistent with the channel depth.
- Five (5) pile dikes between RM 6.4 and RM 7.3 in the main channel.
- Continuation of the main channel beyond RM 15 (in the Isthmus Slough) with a width of 150 ft and a depth of -22 ft MLLW.
- A 150-ft-wide Charleston Access Channel that has a depth that varies from -17 ft to -14 ft MLLW.
- A breakwater and bulkhead at Charleston.
- The Charleston Small Boat Basin (10 ft deep) was constructed by USACE in 1956 and maintained by the OIPCB.
- Advanced maintenance dredging (AMD) of the channel extends offshore to RM -0.55, where the width of maintenance is 1,060 ft. Authorized AMD is 5 ft of depth in the Entrance Channel (RM 0.55 to RM 1) and 1 ft of depth upstream of RM 1.

The USACE maintains the above elements to provide navigational access to Coos Bay. USACE maintenance of the main navigation channel and jetty features provides ongoing deep-draft navigation access to Coos Bay.

1.4 Description of Proposed Action

To accommodate larger deep draft vessels and provide local, state, and federal economic benefits, the Port proposes navigation channel improvements to the Coos Bay Navigation Channel. These proposed channel improvements are hereinafter referred to as the 2023 Proposed Alteration (2023 PA), and they are summarized as follows:

- Coos Bay Inside Range: the channel from RM 1.3 to RM 2.8 on the red side of the channel was widened. The range heading of the Coos Bay Inside Range was changed by 1° from 28.0° 208.0° to 27.0° 207.0°.
- Bend Widener at RM 4.0: a bend widener was included in the 2023 PA to add an additional 50 ft on the green side in the turn from Coos Bay Range to Empire Range.
- Post Panamax Generation 3 (PPX3) Containership Turning Basin at RM 5.0: a larger turning basin at the container facility is needed to accommodate the PPX3 containership. Based on the vessel's dimensions, the proposed turning basin is 2,000 feet long (parallel to the channel) and 1,600 feet wide. The turning basin's design bottom elevation is -45 ft MLLW, the same as the 2023 PA channel.
- Capesize Turning Basin at RM 8.0: a Capesize turning basin was added at RM 8.0 to replace the turning basin that was removed at RM 7.5. Operationally, this turning basin will be used by inbound empty vessels. Therefore, the turning basin's design bottom elevation is -37 ft MLLW. The deeper navigation channel (450-ft wide at -45 ft MLLW) continues through the length of the turning basin.

The above improvements are shown in Table 1-1 and Table 1-2; no dredging is proposed beyond the boundaries in these tables. The project vicinity is represented graphically in Figure 1-2. In this figure, the channel is labeled by RM. Figure 1-2 also shows the location of the adjacent federal infrastructure: the two jetties that run parallel to the channel from RM 0 to RM 1 and the pile dikes located along the north bank of the channel from RM 6.4 to RM 7.5.

Table 1-1

Channel Footprint for Existing Authorized Project and 2023 PA

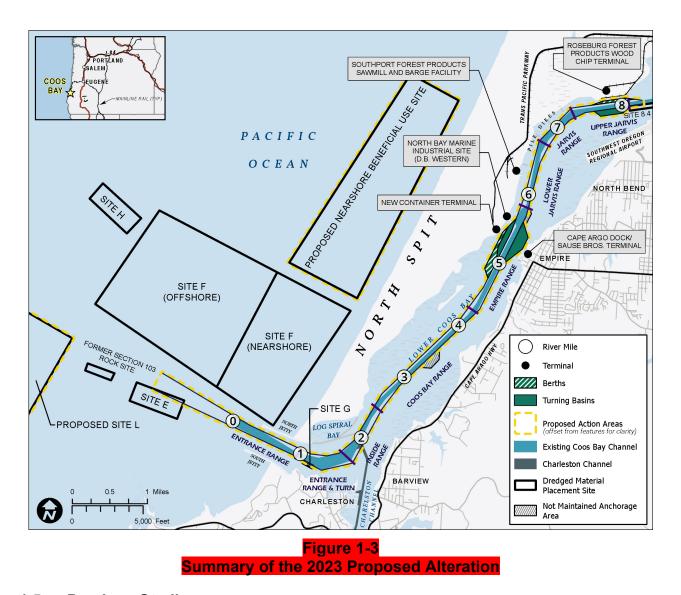
Range(s) and RM	Existing Conditions	2023 PA			
	Offshore	Offshore Extent			
Offshore Limit including Advanced Maintenance Dredging	RM -0.55 ¹	RM -1			
Offshore Limit of Navigation Channel	RM 0 ¹	RM -0.9			
	Channel \	Width (ft)			
Offshore Inlet Offshore Limit of Navigation Channel to RM 0.3	700 narrowing to 550	1,280 narrowing to 600			
Entrance Range RM 0.3 to 1.0	550 narrowing to 300	600			
Entrance Range RM 1.0 to 2.0 and Turn	Varies up to 740	Varies up to 1,140			
Inside Range RM 2.0 to 2.5	300	500			
Coos Bay Range RM 2.5 to 4.3	300	450			
Empire Range RM 4.3 to 5.9	300	450			
Post Panamax Generation 3 Turning Basin RM 4.7 to 5.6	None	2,000 x 1,600			

Range(s) and RM	Existing Conditions	2023 PA		
Lower Jarvis Range RM 5.9 to 6.8	300	450		
Jarvis Turn RM 6.8 to 7.3	400	500		
Upper Jarvis Range RM 7.3 to 8.2	300	450		
Capesize Turning Basin RM 7.6 to 8.0	None	2,000 × 1,100		

Notes:

2.

1. The authorized FNC starts at RM 0. However, advanced maintenance dredging (AMD) occurs further offshore, typically from the channel entrance to RM -0.55. The channel width at RM -0.55 is approximately 960 ft.


Table 1-2 Channel Depth for Existing Authorized Project and 2023 PA

	-	ttom Elevation ILLW)	Advance Maintenance Dredging ¹ (ft)		
Range(s) and RM	Existing 2023 PA Conditions		Existing Conditions	2023 PA	
Offshore Inlet Offshore Limit of Navigation Channel to RM 0.3	-47	-57	5	6	
Entrance Range RM 0.3 to 1.0	-47 decreasing to -37 ²	-57 decreasing to -45 ³	Varies 5 to 1 ⁴	Varies 1 or 6 ⁵	
Entrance Range and Turn RM 1.0 to 2.0	-37	-45	1	1	
Inside Range RM 2.0 to 2.5	-37	-45	1	1	

-37	-45	1	1
-37	-45	1	1
None	-45	None	1
-37	-45	1	1
-37	-45	1	1
-37	-45	1	1
None ⁶	-37 ⁶	None	1
	-37 None -37 -37	-37 -45 None -45 -37 -45 -37 -45 -37 -45	-37 -45 1 None -45 None -37 -45 1 -37 -45 1 -37 -45 1

Notes:

- 1. Capital dredging consists of the navigation depth plus AMD plus a rock buffer plus a portion of overdepth.
- 2. For the existing channel, the navigation depth decreases from a depth of -47 ft to -37 ft MLLW between RM 0.4 and RM 0.7. The channel is dredged farther offshore to allow for AMD.
- 3. For the 2023 PA, the navigation depth decreases by 12 ft between RM 0.3 (depth of -57 ft MLLW) and RM 1.0 (depth of -45 ft MLLW).
- 4. AMD of 5 ft starts at the offshore daylight line, approximately RM -0.6, and continues to RM 0.7.
- 5. AMD of 6 ft starts at the offshore daylight line. The AMD will be 1 ft in areas near Guano Rock (RM 0.7 to RM 1).
- 6. Under the Existing Conditions, there is no formal turning basin; vessels that visit RFP turn in existing deeper water at this location. Under the 2023 PA, incoming vessels will enter the channel and turn under ballast load, so it is not necessary to dredge beyond -37 ft MLLW.

1.5 Previous Studies

The geotechnical investigation program to date has been completed in the following three primary phases: a 2010 to 2011 phase of work that included 11 overwater borings, laboratory testing, and preparation of a draft geotechnical data report; a 2016 to 2017 phase of work that included 28 overwater borings, three upland borings, 56 jet probes, one diving exploration, and laboratory testing; and a 2023 to 2024 phase of work that included 15 overwater borings, laboratory testing, and preparation of this geotechnical data report (GDR), which combines the results of the 2010 to 2011, 2016 to 2017, and 2023 to 2024 geotechnical investigation phases. This GDR describes the work accomplished, provides a summary of subsurface conditions at the project site, and presents geotechnical data and information related to the investigations. The general project area and locations of the overwater borings, upland borings, jet probes, and diving exploration are presented in the Exploration Site Plans, Figures 2-0 through 2-6. The Exploration Site Plans are based on Sub-

Appendix 8 – Drawings. Detailed discussions of the field exploration and laboratory testing programs for the project are provided in Appendices A and B, respectively.

David Evans and Associates, Inc., (DEA) collected geophysical survey data in 2005, multibeam bathymetric and sub-bottom profiler data in 2008, and additional geophysical survey data in 2016 and 2017. Arc Surveying & Mapping, Inc. (Arc) completed a bathymetric and electrical resistivity survey of the channel in 2023. GHD utilized the subsurface conditions presented in this GDR to supplement the geophysical data and provide estimates of rock within the channel (see Sub-Appendix 2 – Geophysical Assessment and Reports). The USACE completed the following geotechnical investigations within Coos Bay for previous dredging projects:

- USACE Portland District, 1974; Coos Bay and Harbor, Oregon, Geologic Investigations.
- USACE Portland District, 1995; Coos Bay, Oregon; Lower Coos River, Oregon; Coos Bay Channel Deepening, 1994 Subsurface Explorations.

The geotechnical information from the USACE efforts is included in Appendices C and D. A comparison of the subsurface conditions encountered during the 1974 and 1995 USACE investigations and the Port's investigations is provided in Section 4 of this report. The available geophysical information is summarized in Sub-Appendix 2 – Geophysical Assessment and Reports, which describes the sources of information utilized to develop an estimated rock-surface model. This available information includes geophysical surveys, subsurface explorations completed by the USACE Portland District to support its previous dredging efforts, and subsurface explorations completed as part of this GDR.

1.6 Report Organization

This report is organized into the following sections:

Section 1 – Introduction: Background information on the Project.

Section 2 – Site Description: Description of the bathymetry, regional geologic and seismic settings, and the local geological setting and conditions.

Section 3 – Subsurface Conditions: Description of work completed and the soil and rock conditions encountered as part of the geotechnical investigation program.

Section 4 – Discussion: Description of the various considerations related to the results of the geotechnical investigation program as compared to previous studies completed by the USACE.

Section 5 – Limitations: Information to help readers manage risks with respect to use of this report.

Section 6 – References: Identification of the references used in the geotechnical investigation program.

Appendix A – OIPCB Field Explorations: Presentation of a detailed description of the subsurface explorations completed as part of the geotechnical investigation program, borings logs, and rock-core photographs.

Appendix B – **Laboratory Testing:** Presentation of a detailed description of the geotechnical laboratory testing completed as part of the geotechnical investigation program and the results of the laboratory testing.

Appendix C – USACE 1974 Field Explorations: Presentation of the boring logs and rock-core photographs completed as part of the USACE 1974 field explorations.

Appendix D – USACE 1994 Field Explorations and Laboratory Testing: Presentation of the boring logs, rock-core photographs, and laboratory testing completed as part of the USACE 1994 field explorations.

Appendix E – Kenneth L. Finger, Ph.D., Consulting, Paleontologist, Micropaleontological Examination: Presentation of the report used to identify the various geologic formations encountered as part of the geotechnical investigation program.

2. SITE DESCRIPTION

2.1 Bathymetry

The bathymetry shown on the Exploration Site Plans (Figures 2-0 through 2-6) is based on the information provided in Sub-Appendix 8 – Drawings.

2.2 Regional Geologic Setting

The project area is located within a portion of the Coos Bay region that features lowland areas generally underlain by Quaternary unconsolidated sediments and upland areas of Paleogene and Neogene sedimentary rock. Geologic mapping in the area shows stable (vegetated) and unstable sand dunes (Beaulieu and Hughes, 1976), underlain by sedimentary rock. Recent dating of dune sand in the Florence and Coos dune sheets indicates the dunes in the immediate proximity of the project area were deposited during the late-Holocene epoch; however, late-Pleistocene dune deposits are exposed within the project area as well (Peterson et al., 2005). Based on geologic mapping within the project area, the dune sands are assumed to be underlain by Paleogene and Neogene sedimentary rock (Madin et al., 1995; Beaulieu and Hughes, 1975).

Non-marine and marine sedimentary rocks exposed in the upland parts of the Coos Bay area were deposited during periods of sea-level change (regressions and transgressions) in the Coos Basin starting in the Eocene epoch. Convergent tectonism uplifted these sedimentary rocks, forming the Coast Range, and caused the initial faulting and folding now observed in the area. Within the southern portion of the project area, the dominant structural feature is the South Slough syncline, which extends from the mouth of Coos Bay southward to the mouth of Winchester Creek. Locally, the area has been folded into a series of primarily north-northeast-trending anticlines and synclines. Faults are generally either north-south-trending reverse faults or west-northwest and east-northeast thrust or oblique strike-slip faults. The regional geologic setting is illustrated in Figure 3-0.

2.3 Local Geologic Conditions

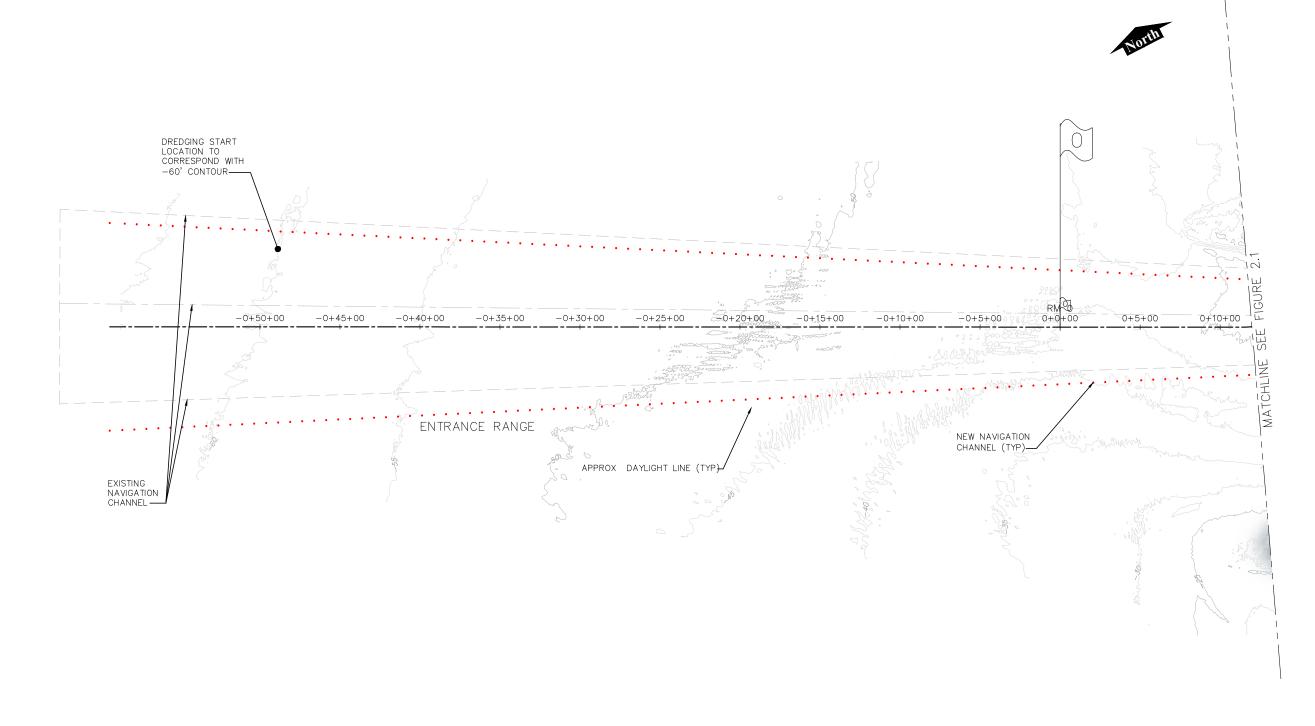
Based on review of published literature and maps and the results of subsurface explorations performed during the 2010 through 2024 explorations, the Port identified the following bedrock geologic units (from youngest to oldest) within the project area that may be relevant to the construction of the project:

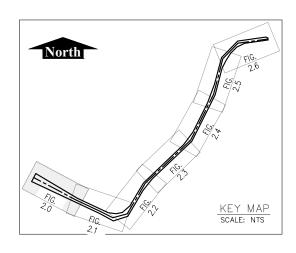
- Eocene-aged Coaledo Formation,
- Eocene-aged Bastendorff Formation, and
- Miocene-aged Empire Formation.

The approximate limits of these formations, whether encountered at the mudline or where estimated underlying sediment is within the PA channel, are shown on the Exploration Site Plans (Figures 2-0 through 2-6).

Diller (1899) named the Coaledo Formation for a series of predominantly non-marine, coal-bearing, late-Eocene strata exposed a few miles south of Coos Bay. Turner (1938) proposed a division of the Coaledo into lower and upper sandstone members, separated by a middle unit of marine mudstone. The overlying Bastendorff Formation consists of thinly laminated, dark-brown siltstones and

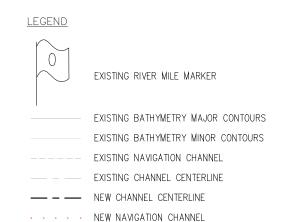
mudstones that weather a light brown. As shown on Figure 4-0, the Bastendorff Formation is unconformable with the Miocene Empire Formation, which consists of a basal conglomerate and sandstones (Addicott, 1983; Beaulieu and Hughes, 1975). The lower fossiliferous portion of the Empire Formation has been described informally as the *Miocene Beds* (Moore, 1963; Oles et al., 1980). The local geologic conditions are illustrated in Figure 5-0.


Selected core samples were submitted to Kenneth L. Finger, Ph.D., Consulting Paleontologist, for age dating. The purpose of the micropaleontology examination was to inspect selected rock-core samples from the borings for micropaleontological evidence that differentiates the Empire, Bastendorff, and Coaledo formations. The analyses provided identification of fossils typical for the various geologic formations to confirm and/or refine the boundaries between geologic formations based on the age of the geologic units. The results of the micropaleontology examination indicate the presence of deep-water fauna typical of the Bastendorff Formation in borings B-21 and B-23 and shallow-marine fauna typical of the Empire Formation in boring B-30. The micropaleontology examination is provided as Appendix E.

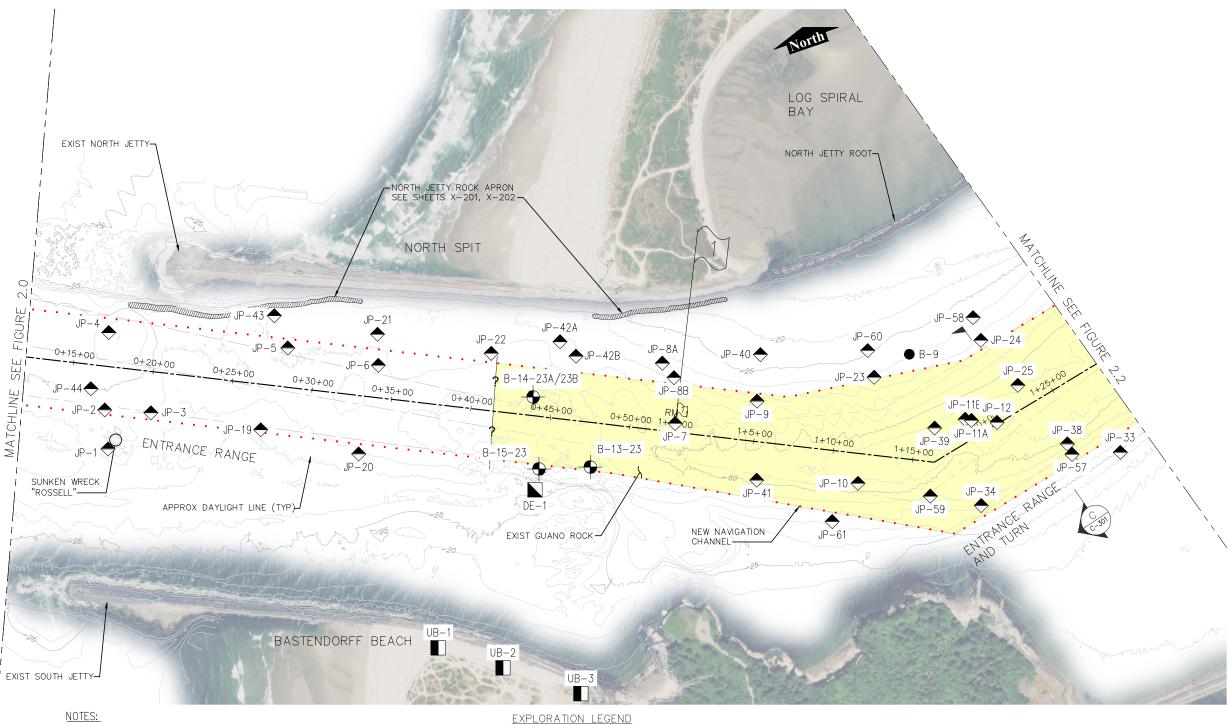

Section 3 of this report provides a summary of geologic conditions within the project area. Additional geologic discussion will be completed as part of the Environmental Impact Statement (EIS) phase of the project.

2.4 Regional Tectonic and Seismic Setting

The project area is located along the eastern edge of the Cascadia Subduction Zone (CSZ), the active convergent-plate boundary between the subducting Explorer, Juan de Fuca, and Gorda plates, and the overriding North American Plate. The convergence of these plates dominates the regional tectonics and results in megathrust earthquakes, which are interplate earthquakes that occur when a tectonic plate subducts beneath another plate at a shallow dip. Offshore, subduction causes a deformation zone along the western edge of the accretionary wedge complex, strike-slip faulting in the North American Plate, and a zone of folding extending from the coast westward. Onshore, the major tectonic elements associated with the subduction zone include a deformed forearc basin (the Coast Range and Willamette Valley), a volcanic arc complex (the Cascade Range), and a backarc. The regional tectonic and seismic setting is illustrated in Figure 6-0.


On a more local scale, the project area lies at the junction of the accretionary wedge complex and the forearc basin. Local bedrock structure within the project area has been the subject of ongoing study to evaluate seismogenic sources and paleoseismicity associated with the subduction zone. Local structures reflect east-west compressional deformation resulting from ongoing oblique subduction on the CSZ that has occurred since the late-middle Miocene epoch (Wells and Peck, 1961) and include the megathrust itself, north-south-trending folds, north-south-trending reverse and thrust faults, and west-northwest-trending oblique strike-slip faults (Black and Madin, 1995; Goldfinger et al., 1992). Within the PA channel, the compression deformation manifests in the South Slough Syncline. Geologic maps for the project area indicate that bedding surfaces dip toward the east-northeast down stream of approximately RM 2 and toward the west-northwest upstream of RM 2 as a result of the South Slough Syncline (Madin et al., 1995).

NOTES:


- 1. ELEVATIONS SHOWN BASED ON MLLW VERTICAL DATUM.
- 2. CONTOUR INTERVAL 5 FEET.
- 3. AERIAL IMAGE: USDA NAIP, 2016.
- 4. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
- 5. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.

SITE PLAN AND COMPILED BATHYMETRY FROM MOFFATT & NICHOL

Figure 2-0: Exploration Site Plan

- 1. ELEVATIONS SHOWN BASED ON MLLW VERTICAL DATUM.
- 2. CONTOUR INTERVAL 5 FEET.
- 3. AERIAL IMAGE: USDA NAIP, 2016.
- 4. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
- 5. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.

BEDROCK GEOLOGIC FORMATION LEGEND

EMPIRE FORMATION (SANDSTONE)

NOTE: BEDROCK IS OVERLAIN BY SEDIMENT WITH VARYING THICKNESS

BORING COMPLETED BY GRI (2023) GRI (2018) IN-WATER EXPLORATION GRI (2017) JET PROBE EXPLORATION <u>LEGEND</u> EXISTING RIVER MILE MARKER EXISTING BATHYMETRY MAJOR CONTOURS

EXISTING BATHYMETRY MINOR CONTOURS

EXISTING NAVIGATION CHANNEL EXISTING CHANNEL CENTERLINE GRI (2016) UPLAND BORING EXPLORATION

• GRI (2010) BORING EXPLORATION

■ CORPS (1974) EXPLORATION

SITE PLAN AND COMPILED BATHYMETRY FROM

1,200 FT

MOFFATT & NICHOL

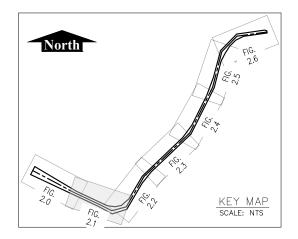
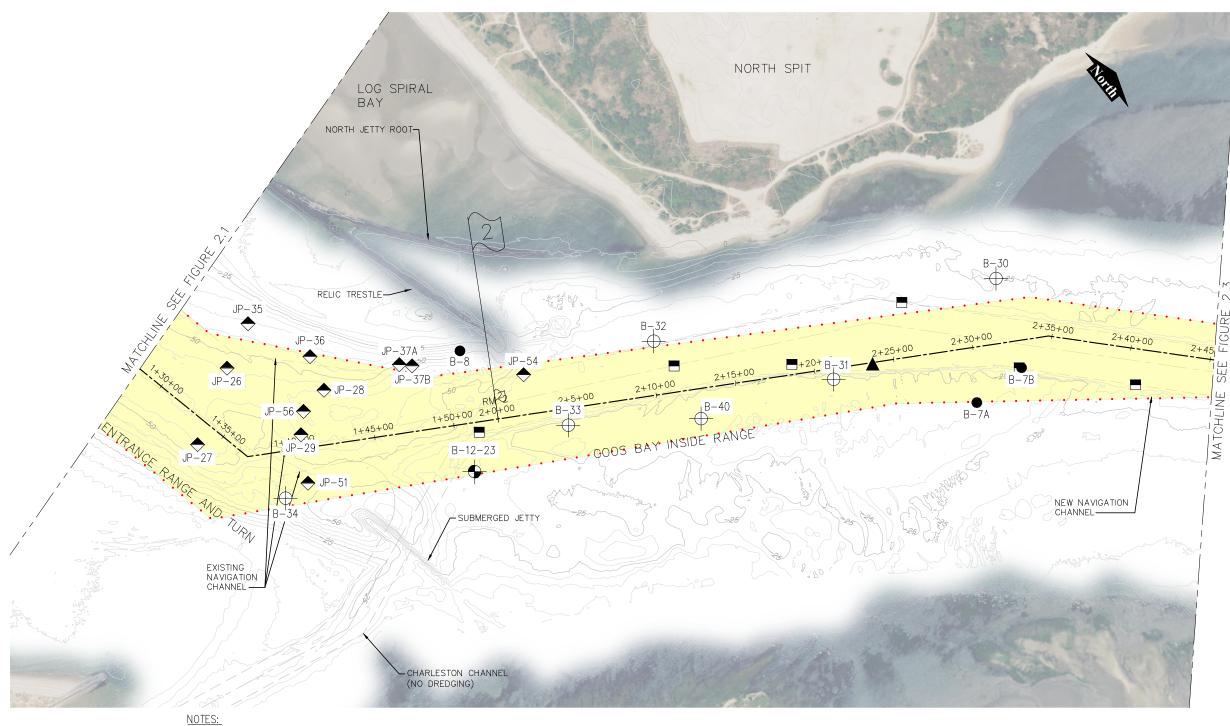



Figure 2-1: Exploration Site Plan

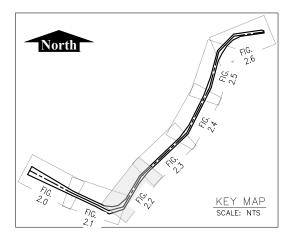
- 1. ELEVATIONS SHOWN BASED ON MLLW VERTICAL DATUM.
- 2. CONTOUR INTERVAL 5 FEET.
- 3. AERIAL IMAGE: USDA NAIP, 2016.
- 4. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
- 5. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.

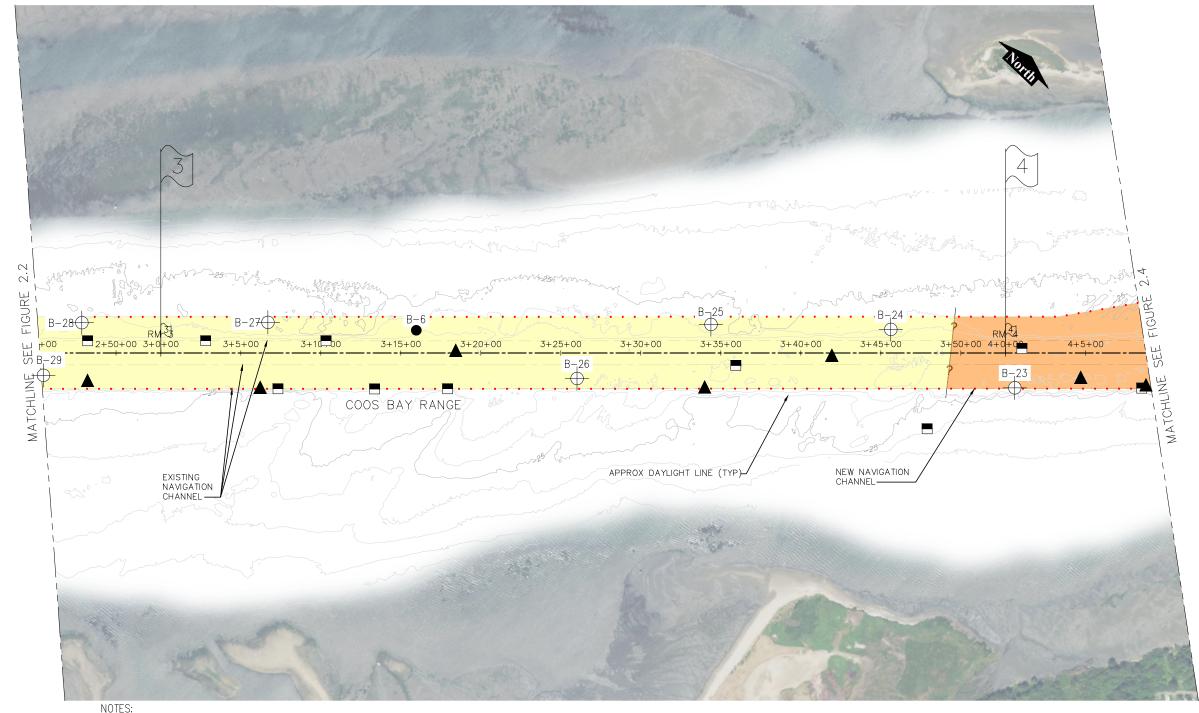
BEDROCK GEOLOGIC FORMATION LEGEND

EMPIRE FORMATION (SANDSTONE)

NOTE: BEDROCK IS OVERLAIN BY SEDIMENT WITH VARYING THICKNESS

EXPLORATION LEGEND BORING COMPLETED BY GRI (2023) GRI (2010) BORING EXPLORATION CORPS (1994) EXPLORATION GRI (2016) BORING EXPLORATION CORPS (1974) EXPLORATION LEGEND EXISTING RIVER MILE MARKER EXISTING BATHYMETRY MAJOR CONTOURS


EXISTING BATHYMETRY MINOR CONTOURS

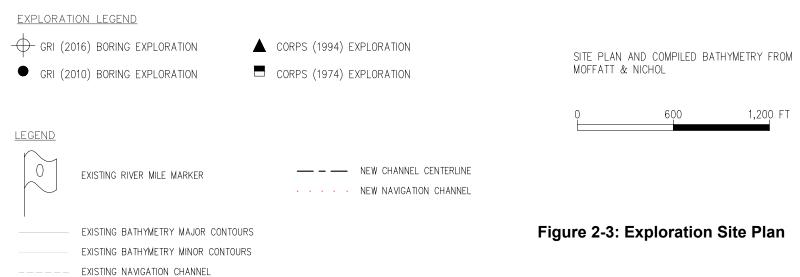

EXISTING NAVIGATION CHANNEL EXISTING CHANNEL CENTERLINE

SITE PLAN AND COMPILED BATHYMETRY FROM MOFFATT & NICHOL

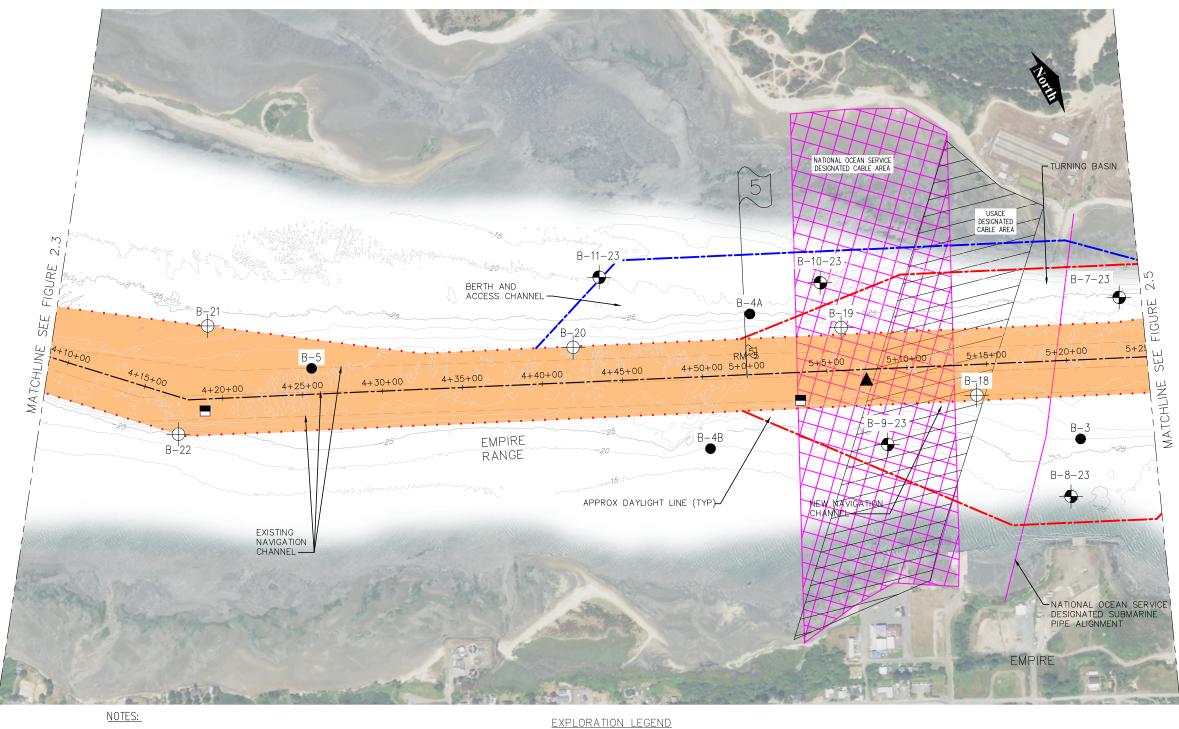
0 600 1,200 FT

Figure 2-2: Exploration Site Plan

EXISTING CHANNEL CENTERLINE


- 1. ELEVATIONS SHOWN BASED ON MLLW VERTICAL DATUM.
- 2. CONTOUR INTERVAL 5 FEET.
- AERIAL IMAGE: USDA NAIP, 2016.
- 4. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
- 5. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.


BEDROCK GEOLOGIC FORMATION LEGEND


EMPIRE FORMATION (SANDSTONE)

BASTENDORFF FORMATION (SILTSTONE)

NOTE: BEDROCK IS OVERLAIN BY SEDIMENT WITH VARYING THICKNESS

EXISTING NAVIGATION CHANNEL

EXISTING CHANNEL CENTERLINE

- 1. ELEVATIONS SHOWN BASED ON MLLW VERTICAL DATUM.
- 2. CONTOUR INTERVAL 5 FEET.
- 3. AERIAL IMAGE: USDA NAIP, 2016.
- 4. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
- 5. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.

BEDROCK GEOLOGIC FORMATION LEGEND

BASTENDORFF FORMATION (SILTSTONE)

NOTE: BEDROCK IS OVERLAIN BY SEDIMENT WITH VARYING THICKNESS

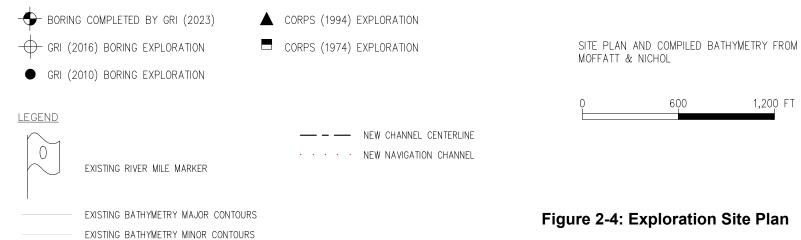
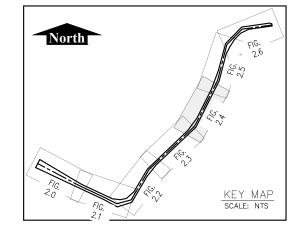
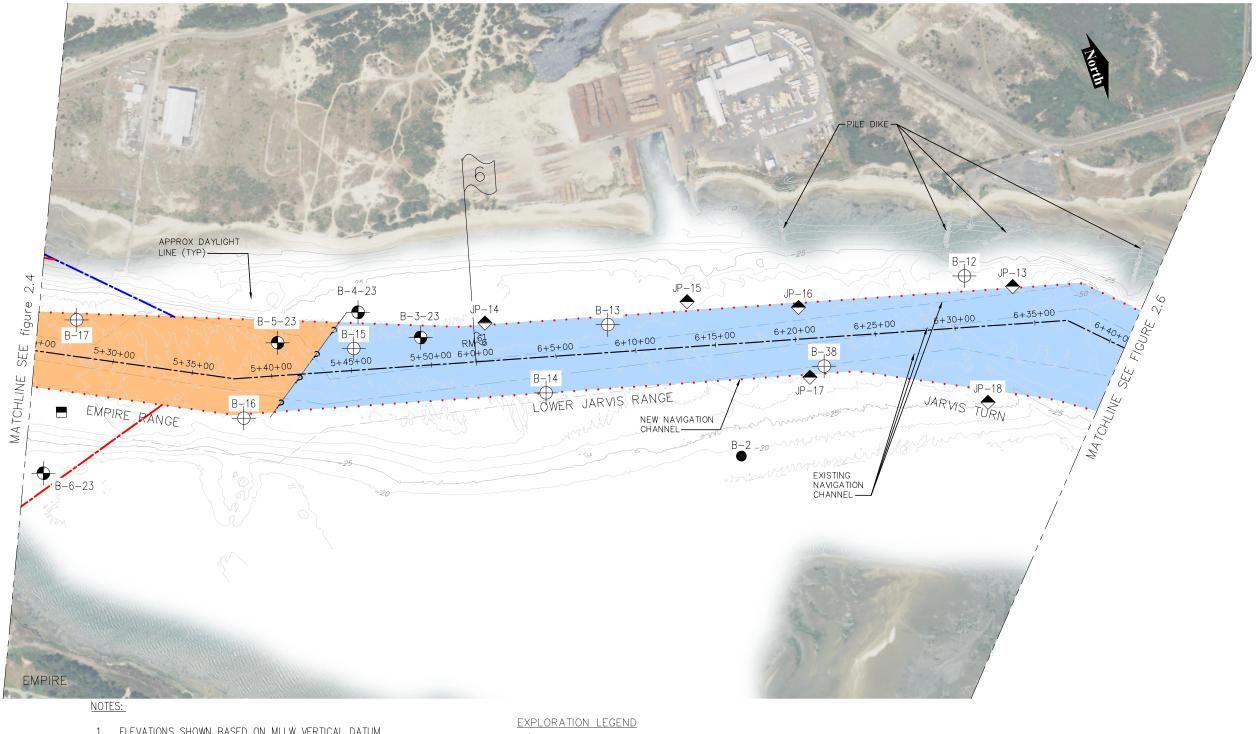
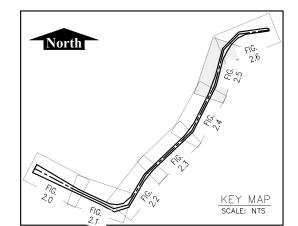





Figure 2-4: Exploration Site Plan

1,200 FT

1. ELEVATIONS SHOWN BASED ON MLLW VERTICAL DATUM.

- 2. CONTOUR INTERVAL 5 FEET.
- AERIAL IMAGE: USDA NAIP, 2016.
- 4. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
- 5. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.

BEDROCK GEOLOGIC FORMATION LEGEND

BASTENDORFF FORMATION (SILTSTONE)

COALEDO FORMATION (SANDSTONE)

NOTE: BEDROCK IS OVERLAIN BY SEDIMENT WITH VARYING THICKNESS

BORING COMPLETED BY GRI (2023) GRI (2017) JET PROBE EXPLORATION GRI (2016) BORING EXPLORATION

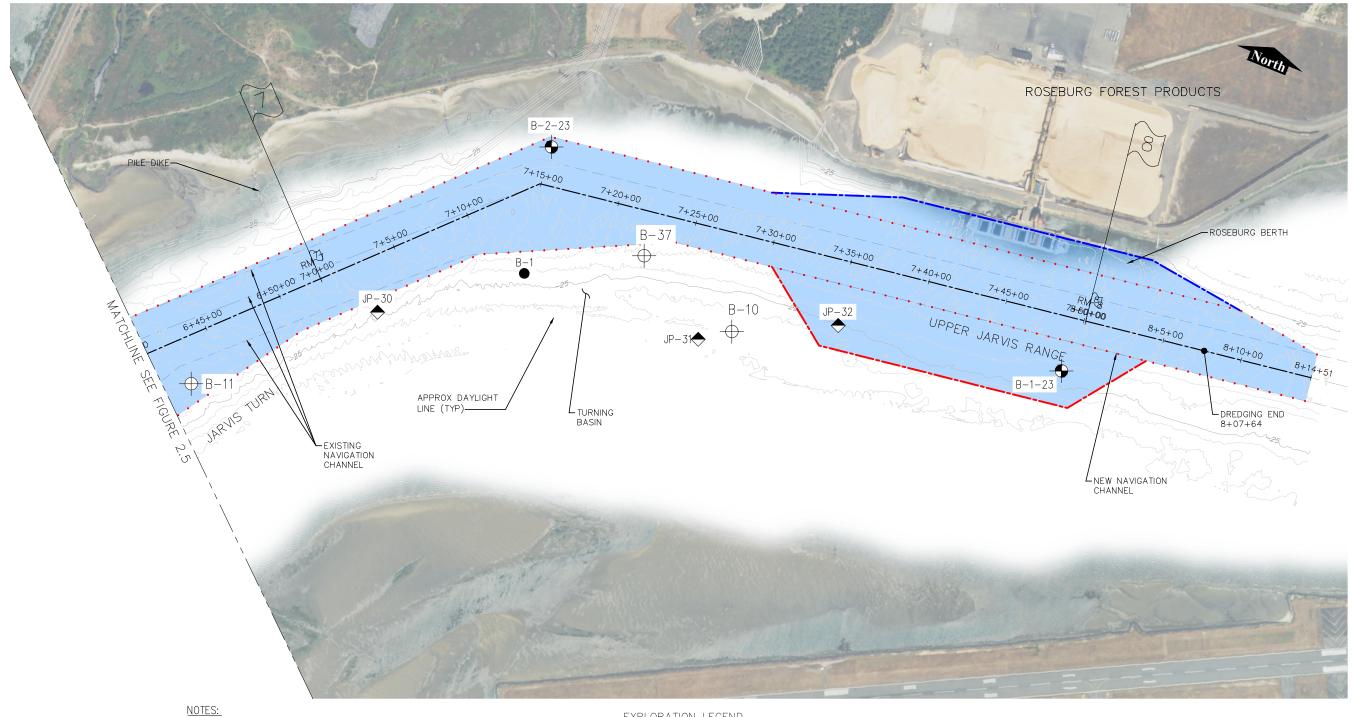
GRI (2010) BORING EXPLORATION

CORPS (1974) EXPLORATION

--- NEW CHANNEL CENTERLINE · · · · NEW NAVIGATION CHANNEL

SITE PLAN AND COMPILED BATHYMETRY FROM MOFFATT & NICHOL

Figure 2-5: Exploration Site Plan



<u>LEGEND</u>

EXISTING RIVER MILE MARKER

EXISTING BATHYMETRY MAJOR CONTOURS EXISTING BATHYMETRY MINOR CONTOURS EXISTING NAVIGATION CHANNEL

EXISTING CHANNEL CENTERLINE

- 1. ELEVATIONS SHOWN BASED ON MLLW VERTICAL DATUM.
- 2. CONTOUR INTERVAL 5 FEET.
- 3. AERIAL IMAGE: USDA NAIP, 2016.
- 4. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
- 5. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.

BEDROCK GEOLOGIC FORMATION LEGEND

COALEDO FORMATION (SANDSTONE)

NOTE: BEDROCK IS OVERLAIN BY SEDIMENT WITH VARYING THICKNESS

EXPLORATION LEGEND

GRI (2016) BORING EXPLORATION

<u>LEGEND</u>

EXISTING RIVER MILE MARKER

EXISTING CHANNEL CENTERLINE

EXISTING BATHYMETRY MAJOR CONTOURS EXISTING BATHYMETRY MINOR CONTOURS EXISTING NAVIGATION CHANNEL

• GRI (2010) BORING EXPLORATION

- - NEW CHANNEL CENTERLINE

· · · · NEW NAVIGATION CHANNEL

SITE PLAN AND COMPILED BATHYMETRY FROM MOFFATT & NICHOL

North

3. SUBSURFACE CONDITIONS

3.1 General

The subsurface exploration programs for this project were completed during six separate mobilizations. The first mobilization occurred between September 8 and 17, 2010. Subsequent mobilizations were completed as funding for the project was available and the project design advanced. The second and third mobilizations occurred between July 14 and August 12, 2016, and between October 31 and November 3, 2016, respectively. The purpose of the second and third mobilizations was to complete additional overwater borings to further supplement previous geotechnical and geophysical exploration programs and further evaluate the strength and material characteristics of rock and overlying materials located within the proposed dredge prism. The fourth mobilization occurred between March 22 and April 21, 2017. The purpose of the fourth mobilization was to complete jet-probe explorations to further supplement geophysical and subsurface explorations and further support further development of the sediment and rock surfaces within the channel. The fifth mobilization occurred between October 25 and 27, 2017. The primary purpose of the fifth mobilization was to help evaluate the strength and material characteristics of the rock at Guano Rock. The sixth mobilization occurred between October 2nd and November 7th, 2023. The primary purpose of the sixth mobilization was to help evaluate the strength and material characteristics of rock at Guano Rock as well as materials further upriver in the proposed turning basin near Empire and other areas.

Subsurface materials and conditions within the project area were investigated with overwater, upland, and diving explorations. The overwater subsurface explorations included 54 overwater borings and 56 jet probes. The overwater borings were designated B-1 through B-3, B-4A, B-4B, B-5, B-6, B-7A, B-7B, B-8 through B-34, B-37, B-38, and B-40; the 2023 overwater explorations were designated B-1-23 through B-15-23. It should be noted that B-15-23 was labeled as B-16-23 in the field; however, B-16-23 was re-labeled to B-15-23 and noted in this report accordingly. Borings B-35, B-36, and B-39 could not be completed using a floating barge due to the amount of ocean swell at these locations. The jet probes were designated JP-1 through JP-44, JP-51, JP-54, and JP-56 through JP-61. Jet probes JP-45 through JP-50, JP-52 and JP-53, JP-55, and JP-62 were considered "Secondary Importance/Backup" or "Supplemental As Needed" by the PDT and not completed. The upland subsurface explorations included three borings designated UB-1 through UB-3. The diving exploration was designated DE-1. Borings B-1-23 through B-15-23 were completed from a hydraulic jack-up barge, which allowed for the successful completion of explorations at Guano Rock in strong ocean swell conditions. The approximate locations of the overwater, upland, and diving explorations are shown on the Exploration Site Plans, Figures 2-0 to 2-6. A summary of boring location, mudline elevation, elevation where rock was first encountered, and bottom-ofboring elevation for each overwater boring is provided in Table 3-1 below. As shown in Table 3-1, the bottom elevation of the borings was developed to coincide with an elevation of at least 5 ft below the planned Maximum Allowable Overdepth. The methodology for estimating mudline, rock, and bottom-of-boring elevation is provided in Section A-1.1.1 of Appendix A. A summary of boring location, ground-surface elevation, elevation where rock was first encountered, and the bottom-of-boring elevation for the upland borings is provided in Table 3-2. Logs of the borings are provided in Appendix A. A summary of jet-probe location and elevation of refusal for each jet probe, if applicable, is provided in Table 3-3 below. A methodology for estimating rock elevation

for the jet probes is provided in Section A-1.3 of Appendix A. A summary of the exploration location, mudline elevation, elevation where rock was first encountered, and bottom-of-exploration elevation for the diving exploration is provided in Table 3-4 below. A log of the diving exploration is provided in Appendix A.

Table 3-1
Overwater Boring Locations and Elevations

Boring	Latitude	Longitude	Approximate Station	Approximate River Mile	Mudline Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Boring Elevation (ft, MLLW)
B-1	43.420611	-124.267889	7+12+00	7.23	-30.0	N/A	-61.5
B-2	43.409833	-124.275194	6+15+00	6.28	-18.5	N/A	-60.5
B-3	43.397028	-124.281139	5+20+00	5.38	-29.0	N/A	-61.5
B-4A	43.392917	-124.28725	5+00+00	5.00	-29.5	-45.5	-53.5
B-4B	43.391278	-124.284833	4+50+00	4.95	-20.5	-20.5	-59.5
B-5	43.385778	-124.290722	4+25+00	4.47	-39.5	-39.5	-61.0
B-6	43.373083	-124.305972	3+15+50	3.29	-34.5	-34.5	-62.0
B-7A	43.364417	-124.314139	2+29+00	2.55	-21.0	-21.0	-36.0
B-7B	43.365389	-124.314194	2+31+50	2.60	-37.0	-37.0	-61.0
B-8	43.357722	-124.322194	1+50+00	1.95	-44.0	-58.5	-64.0

Table 3-1
Overwater Boring Locations and Elevations

Boring	Latitude	Longitude	Approximate Station	Approximate River Mile	Mudline Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Boring Elevation (ft, MLLW)
B-9	43.354111	-124.330417	1+12+50	1.24	-28.0	N/A	-34.5
B-10	43.42128	-124.26263	7+29+00	7.55	-19.0	N/A	-53.0
B-11	43.4165	-124.27392	6+42+00	6.80	-38.0	N/A	-54.5
B-12	43.41436	-124.27782	6+30+50	6.58	-38.0	N/A	-54.5
B-13	43.40825	-124.27903	6+08+00	6.15	-34.5	N/A	-56.0
B-14	43.40691	-124.27789	6+03+00	6.06	-38.5	N/A	-55.0
B-15	43.40395	-124.28014	5+44+50	5.84	-33.0	-34.0	-56.5
B-16	43.40181	-124.27928	5+38+00	5.72	-41.0	-43.0	-57.0
B-17	43.39952	-124.28258	5+27+00	5.51	-38.5	-48.5	-52.5
B-18	43.39577	-124.28315	5+13+50	5.26	-37.0	-41.0	-52.0
B-19	43.39421	-124.286	5+05+50	5.10	-34.0	-47.0	-55.5
B-20	43.38995	-124.28841	4+41+00	4.78	-40.0	-49.0	-55.5

Table 3-1
Overwater Boring Locations and Elevations

Boring	Latitude	Longitude	Approximate Station	Approximate River Mile	Mudline Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Boring Elevation (ft, MLLW)
B-21	43.38451	-124.29271	4+18+50	4.35	-29.5	-33.0	-52.5
B-22	43.38323	-124.29074	4+17+00	4.32	-24.0	-31.0	-55.0
B-23	43.37981	-124.29526	4+00+00	4.00	-39.5	-43.0	-52.5
B-24	43.37897	-124.29827	3+45+00	3.85	-28.5	-32.0	-54.5
B-25	43.37680	-124.30128	3+34+00	3.64	-32.0	-34.0	-52.0
B-26	43.3745	-124.30254	3+25+50	3.48	-39.0	-41.0	-54.0
B-27	43.37134	-124.30852	3+06+00	3.11	-26.5	-30.0	-53.5
B-28	43.36903	-124.31154	2+47+50	2.90	-32.5	-36.0	-53.5
B-29	43.36793	-124.31127	2+46+00	2.87	-38.0	-39.0	-53.0
B-30	43.36592	-124.31625	2+31+50	2.60	-26.0	-35.0	-56.5
B-31	43.36265	-124.31654	2+20+00	2.38	-23.5	-26.0	-52.5
B-32	43.36052	-124.31973	2+09+50	2.18	-33.0	-34.0	-53.0

Table 3-1
Overwater Boring Locations and Elevations

Boring	Latitude	Longitude	Approximate Station	Approximate River Mile	Mudline Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Boring Elevation (ft, MLLW)	
B-33	43.35849	-124.31929	2+03+00	2.06	-21.5	-22.5	-52.5	
B-34	43.35382	-124.32176	1+38+50	1.73	-40.5	N/A	-57.0	
B-35				NOT COMPLETED ²				
B-36				NOT COMPLETED ²				
B-37	43.42183	-124.26525	7+22+50	7.43	-36.5	N/A	-53.0	
B-38	43.41162	-124.27669	6+21+00	6.40	-38.0	N/A	-54.5	
B-39				NOT	COMPLETE	D^2		
B-40	43.36041	-124.31760	2+11+50	2.22	-22.0	-23.0	-52.0	
B-1-23	43.422949	-124.255400	7+49+50	7.93	-29.5	N/A	-66.0	
B-2-23	43.422744	-124.268509	7+14+50	7.27	-30.5	N/A	-62.0	
B-3-23	43.405104	-124.279921	5+48+70	5.92	-32.0	N/A	-63.5	
B-4-23	43.404186	-124.280900	5+45+00	5.85	-29.0	-48.0	-62.3	

Table 3-1
Overwater Boring Locations and Elevations

Boring	Latitude	Longitude	Approximate Station	Approximate River Mile	Mudline Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Boring Elevation (ft, MLLW)
B-5-23	43.402718	-124.280715	5+39+65	5.75	-36.0	-47.0	-64.5
B-6-23	43.398245	-124.279268	5+26+00	5.49	-18.5	-25.5	-60.0
B-7-23	43.398739	-124.283695	5+22+90	5.43	-29.5	N/A	-71.0
B-8-23	43.396442	-124.280009	5+19+20	5.36	-23.0	-27.5	-64.5
B-9-23	43.394023	-124.283004	5+07+80	5.15	-20.0	-24.5	-61.5
B-10- 23	43.394250	-124.287132	5+04+40	5.08	-20.5	-45.0	-62.0
B-11- 23	43.390870	-124.289567	4+43+0	4.81	-20.0	-44.0	-61.5
B-12- 23	43.356701	-124.319644	1+50+50	1.96	-34.0	N/A	-67.5
B-13- 23	43.353704	-124.338351	0+47+60	0.90	-41.5	-41.5	-66.8
B-14- 23A /	43.355129	-124.339197	0+43+80	0.83	-41.5	-41.5	-53.8 / -62.3

Table 3-1 Overwater Boring Locations and Elevations

Boring	Latitude	Longitude	Approximate Station	Approximate River Mile	Mudline Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Boring Elevation (ft, MLLW)
B-14- 23B							
B-15- 23 ³	43.353916	-124.339520	0+44+60	0.84	-42.5	-42.5	-64.5

Notes:

- 1. All elevations are estimates.
- 2. Several attempts were made to drill borings B-35, B-36, and B-39 during the 2016 drilling effort. However, these borings could not be completed due to ocean-swell conditions and excessive barge movement.
- 3. B-15-23 was labeled as B-16-23 in the field and in core box photos.

Table 3-2
Upland Boring Locations and Elevations

Boring	Latitude	Longitude	Approxi- mate Station	Approximate River Mile	Ground Surface Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Boring Elevatio n (ft, MLLW)
UB-1	43.351482	-124.342956	0+40+00	0.76	13.8	-30.7	-65.2
UB-2	43.350847	-124.341620	0+44+50	0.84	14.6	-23.9	-60.4
UB-3	43.350055	-124.340027	0+50+00	0.95	16.9	-7.2	-53.2

Notes:

1. All elevations are estimates.

Table 3-3
Overwater Jet Probe Locations and Elevations

Exploration	Latitude	Longitude	Approxi- mate Station	Approximate River Mile	Jet Probe Penetration Elevation (ft, MLLW)	Top of Rock (Refusal) Elevation (ft, MLLW)
JP-1	43.356312	-124.349140	0+18+00	0.34	-84.2	-84.2
JP-2	43.356971	-124.348963	0+17+50	0.33	-78.9	-78.9
JP-3	43.356706	-124.347938	0+20+00	0.38	-71.1	-71.1
JP-4	43.358230	-124.348373	0+16+50	0.31	-79.9	-79.9
JP-5	43.357134	-124.344426	0+28+00	0.53	-77.9	-77.9
JP-6	43.356422	-124.342492	0+34+00	0.64	-88	N/A
JP-7	43.354069	-124.336156	1+00+00	1.00	-85.3	-85.3
JP-8a³	43.355124	-124.336057	0+51+00	0.97	-60.1	-60.1
JP-8b ³	43.354830	-124.335887	0+51+50	0.98	-63.4	-63.4
JP-9	43.354053	-124.334160	1+05+00	1.09	-74.7	-74.7
JP-10	43.352222	-124.332408	1+12+00	1.23	-83.1	-83.1
JP-11a	43.352727	-124.329440	1+20+50	1.39	-73.6	-73.6
JP-11b	43.352775	-124.329574	1+20+00	1.38	-67.6	-67.6
JP-12	43.352573	-124.328873	1+21+50	1.41	-67.6	-67.6

Table 3-3
Overwater Jet Probe Locations and Elevations

Exploration	Latitude	Longitude	Approxi- mate Station	Approximate River Mile	Jet Probe Penetration Elevation (ft, MLLW)	Top of Rock (Refusal) Elevation (ft, MLLW)
JP-13	43.415107	-124.277269	6+33+00	6.63	-90.1	N/A
JP-14	43.406235	-124.279866	6+00+00	6.00	-88.9	N/A
JP-15	43.409668	-124.279038	6+13+00	6.25	-90.3	N/A
JP-16	43.411476	-124.278186	6+19+00	6.36	-89.9	N/A
JP-17	43.411335	-124.276531	6+20+00	6.38	-88.4	-88.4
JP-18	43.414152	-124.274810	6+31+00	6.59	-85.7	-85.7
JP-19	43.355912	-124.345565	0+27+50	0.52	-69.3	-69.3
JP-20	43.355053	-124.343505	0+33+00	0.63	-53.3	-53.3
JP-21	43.356939	-124.342310	0+34+00	0.64	-88.5	N/A
JP-22	43.356090	-124.339862	0+41+00	0.78	-88.5	N/A
JP-23	43.353897	-124.331361	1+12+00	1.23	-61.5	-61.5
JP-24	43.354004	-124.328710	1+24+00	1.45	-80.1	-80.1
JP-25	43.353089	-124.328164	1+23+50	1.45	-64.7	-64.7
JP-26	43.354300	-124.325048	1+32+50	1.62	-87.5	-87.5

Table 3-3
Overwater Jet Probe Locations and Elevations

Exploration	Latitude	Longitude	Approxi- mate Station	Approximate River Mile	Jet Probe Penetration Elevation (ft, MLLW)	Top of Rock (Refusal) Elevation (ft, MLLW)
JP-27	43.353126	-124.323988	1+33+00	1.63	-77.8	-77.8
JP-28	43.355432	-124.323301	1+42+00	1.80	-87.8	-87.8
JP-29	43.354667	-124.322763	1+40+00	1.76	-87.8	-87.8
JP-30	43.418953	-124.270642	7+02+00	7.04	-79.3	-79.3
JP-31	43.420834	-124.263524	7+24+00	7.45	-70.3	-70.3
JP-32	43.422054	-124.260668	7+34+50	7.65	-85.5	-85.5
JP-33	43.351501	-124.326280	1+26+00	1.49	-64.5	-64.5
JP-34	43.351277	-124.329766	1+18+00	1.34	-55.4	-55.4
JP-35	43.355036	-124.325610	1+32+00	1.61	-81.8	N/A
JP-36	43.355572	-124.324134	1+41+00	1.78	-82.3	N/A
JP-37a	43.356738	-124.322758	1+46+00	1.87	-67.3	-67.3
JP-37b	43.356904	-124.322561	1+47+50	1.90	-67.6	-67.6
JP-38	43.351888	-124.327422	1+24+00	1.45	-67.3	-67.3
JP-39	43.352775	-124.330320	1+18+00	1.34	-85.7	N/A

Table 3-3
Overwater Jet Probe Locations and Elevations

Exploration	Latitude	Longitude	Approxi- mate Station	Approximate River Mile	Jet Probe Penetration Elevation (ft, MLLW)	Top of Rock (Refusal) Elevation (ft, MLLW)
JP-40	43.354804	-124.333786	1+05+00	1.09	-45.4	-45.4
JP-41	43.352750	-124.334677	1+05+50	1.10	-86.1	N/A
JP-42a	43.355958	-124.338232	0+45+00	0.85	-87.5	N/A
JP-42b	43.355645	-124.337964	0+46+00	0.87	-87.5	N/A
JP-43	43.357730	-124.344524	0+27+50	0.52	-88	N/A
JP-44	43.357386	-124.349140	0+16+50	0.31	-78.3	-78.3
JP-51	43.354281	-124.321742	1+40+00	1.76	-84.3	-84.3
JP-54	43.358372	-124.320869	2+01+00	2.02	-40.2	N/A
JP-56	43.354936	-124.323175	1+40+50	1.77	-84.6	N/A
JP-57	43.351695	-124.327384	1+24+00	1.45	-65.7	-65.7
JP-58	43.354415	-124.328740	1+24+00	1.45	-62.2	-62.2
JP-59	43.351672	-124.330856	1+16+00	1.30	-66.1	-66.1
JP-60	43.354367	-124.331334	1+11+50	1.22	-53.2	-53.2
JP-61	43.351713	-124.333238	1+11+00	1.21	-63.3	-63.3

Notes:

- 1. All elevations are estimates.
- 2. Jet probes JP-45 through JP-50, JP- 52 and JP-53, JP-55, and JP-62 were considered "Secondary Importance/Backup" or "Supplemental As Needed" by the PDT and not completed.
- 3. Jet-probe refusal provides an approximation of top-of-rock elevation. Jet-probe explorations do not allow for descriptive or engineering characteristics of sediment or rock encountered in the explorations.
- 4. JP-8b, JP-11b, JP-37b, and JP-42b represent additional attempts at the planned locations.
- 5. Several attempts were made to complete JP-8a and JP-8b. However, these jet probes could not be completed due to ocean-swell conditions and excessive barge movement.
- 6. Jet probes were generally completed in less than 5 minutes.

Table 3-4
Diving Exploration Location and Elevation

Exploration	Latitude	Longitude	Approximate Station	Approximate River Mile	Mudline Elevation (ft, MLLW)	Top of Rock Elevation (ft, MLLW)	Bottom of Exploration Elevation (ft, MLLW)
DE-1	43.353633	-124.339752	0+45+00	0.85	-22	-22	-23.5

Notes:

1. All elevations are estimates.

3.2 Soil and Rock

The following overwater subsurface explorations encountered sediment to the maximum depth of the explorations:

- Borings B-1 through B-3, B-9 through B-14, B-34, B-37, B-38, B-1-23 through B-3-23, B-7-23, and B-12-23.
- Jet probes JP-6, JP-13 through JP-16, JP-21 and JP-22, JP-35 and JP-36, JP-39, JP-41 through JP-43, JP-54, and JP-56.

The following overwater subsurface explorations encountered bedrock overlain by sediments of varying thickness:

- Borings B-4A, B-8, B-15 through B-33, B-40, B-4-23 through B-6-23, and B-8-23 through B-11-23.
- Jet probes JP-1 through JP-5, JP-7 through JP-12, JP-17 through JP-20, JP-23 through JP-34, JP-37 through JP-38, JP-40, JP-44, JP-51, and JP-57 through JP-61.

Overwater borings B-4B, B-5, B-6, B-7A, B-7B, and B-13-23 through B-15-23 encountered bedrock at the mudline. Diving exploration DE-1 also encountered bedrock at the mudline.

All three of the upland subsurface explorations encountered bedrock overlain by sediments of varying thickness.

In general, the overwater subsurface explorations indicate the presence of sediment deposits throughout the project area, with bedrock exposed at a shallow depth or at the mudline between about RM 2 and RM 6. Guano Rock is also located within the PA channel footprint, between approximately RM 0.7 and RM 0.9. The explorations completed at Guano Rock indicate bedrock is present at the mudline. The available information indicates the thickest sediment deposits exist in the channel between approximately RM 0.3 to RM 2 and RM 6 to RM 8. RM 0.3 is the approximate downstream extent of the subsurface explorations. As indicated in Section 1.0, GHD prepared an updated estimated rock-surface model for the project based on historical information, geophysical surveys, and the geotechnical subsurface explorations included as part of this GDR (see Sub-Appendix 2 – Geophysical Assessment and Reports).

The 1974 USACE investigation encountered sandstone within the PA channel between approximately RM 0.8 and RM 0.9. The sandstone was encountered at the mudline or at shallow depths within the USACE borings and described as unweathered, gray, fine to medium grained, and soft to moderately hard, although the investigation did not include rock-strength testing. The 2023 overwater borings completed at Guano Rock (B-13-23 through B-15-23) encountered bedrock at the mudline. The bedrock encountered in these borings consisted predominantly of sandstone; however, mudstone/siltstone was also encountered at shallower depths in boring B-13-23. The sandstone encountered is fresh, gray, fine-grained, very closely to moderately closely jointed, and contains shell fragments and worm castings. Rock strength testing indicates the sandstone is extremely soft to soft. The mudstone/siltstone encountered is fresh, dark gray, close to moderately closely jointed, and contains shell fragments. Rock strength testing indicates the mudstone/siltstone is extremely soft to soft.

For the purpose of discussion, the materials disclosed by the borings have been grouped into five major units based on their physical characteristics and engineering properties:

SAND

SILT

CLAY (Decomposed Bastendorff Formation)

SANDSTONE and MUDSTONE (Empire Formation)

MUDSTONE/SILTSTONE (Bastendorff Formation)

SANDSTONE (Coaledo Formation)

Laboratory testing completed on samples of each unit is provided in Appendix B. A summary of relevant engineering properties is provided below, on the boring logs, on Figures 1A through 58A, and in the Laboratory Summary, Table 1B.

SAND. Sand was encountered at the mudline in borings B-1 through B-4A, B-8 through B-34, B-38, B-40, and B-1-23 through B-12-23. Sand was encountered beneath the surficial silt in boring B-37. The total range in elevations in which sand was encountered in the overwater borings was from about -18.5 ft, the mudline elevation in boring B-6-23, to -67.5 ft, the maximum depth explored in boring B-12-23. Sand was encountered at the ground surface in upland borings UB-1 through UB-3 and extends to elevations ranging from about -7.1 ft to -30.7 ft. The sand is typically brown to gray and fine- to medium-grained and contains varying amounts of silt. In general, the sand encountered contains relatively low percentages of fine-grained material; however, zones of silty sand were encountered at depth in borings B-3-23 and B-7-23. Shell fragments and organics are present in the sand. A thin layer of sand was encountered beneath the surface of the mudstone/siltstone between about elevation -50 ft and -51 ft in boring B-11-23. Wood chips and debris were observed in the sand in boring B-3 at elevation -40.5 ft, boring B-1-23 at elevation -44.5 ft, boring B-2-23 at elevation -50.5 ft, boring B-6-23 at about elevation -23.5 ft, boring B-7-23 at about elevation -60 ft, and boring B-12-23 at about elevation -46 ft. Thin layers of peat (less than 1 in.) were observed in the sand between elevations -24 ft and -39 ft in boring B-10 and at about elevation -45 ft in boring B-1-23. The relative density of the sand ranges from very loose to very dense based on Standard Penetration Test (SPT) N-values ranging from 1 blow/ft to more than 50 blows for 6 in. or less of sampler penetration, defined as refusal. The relative density of the sand typically increases with depth. The natural moisture content of the sand ranges from about 13 to 50%.

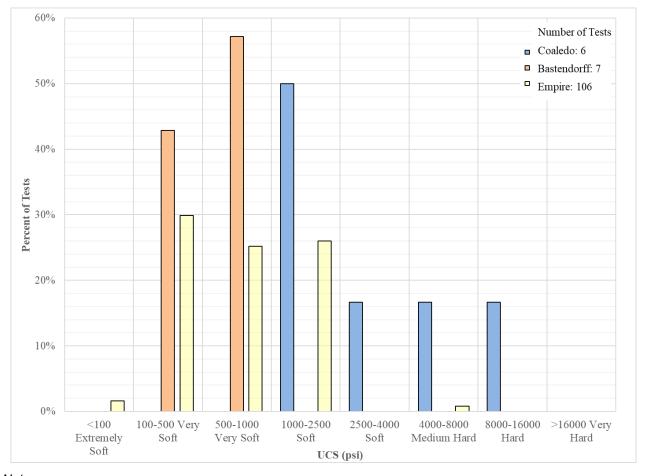
SILT. Silt was encountered at the mudline in boring B-37 and beneath the sand in borings B-2 and B-3. The silt extends to elevations varying from about -41 ft to at least -61.5 ft, the maximum depth explored in boring B-3. The silt is typically gray to brown and contains varying amounts of clay and sand. The silt in boring B-3 contains abundant wood debris, including an 18-in.-thick solid piece of wood at elevation -49.0 ft. The relative consistency of the silt ranges from soft to very stiff based on SPT N-values ranging from 3 blows/ft to 30 blows/ft; however, the presence of wood in the silt in boring B-3 likely resulted in the higher blow count. Based on additional and more recent explorations in the area, the silt noted in boring B-3 is likely residual Bastendorff Formation. The natural moisture content of the silt ranges from about 43% to 71%. Moisture contents above about 50% are typically associated with relatively high clay content (some clay to clayey) and/or the presence of organics. Atterberg limits testing of a representative sample of silt from boring B-2 indicates the soil has a liquid limit of 93% and a plasticity index of 40%. With the exception of relatively thin interbedded layers within the larger sand unit and residual Bastendorff Formation described above, silt was not encountered in any of the upland borings or the overwater borings completed in 2023.

CLAY (Decomposed Bastendorff Formation). Clay was encountered beneath the sand in boring B-7-23. The clay extends from about elevation -65.5 ft to at least about elevation -71 ft, the maximum depth explored in boring B-7-23. The clay is typically dark brown, contains trace amounts of silt and fine- to medium-grained sand, and scattered organics. The relative consistency of the clay is very stiff to hard based on SPT N-values ranging from 18 blows/ft to 51 blows/ft. The natural moisture content of the clay was about 60%. Atterberg limits testing of a representative

sample indicates the clay is of high plasticity with a liquid limit of about 76% and a plasticity index of about 45%.

SANDSTONE AND MUDSTONE (Empire Formation). Sandstone of the Empire Formation was encountered below the sand in borings B-8, B-24 through B-33, B-40, and UB-1 through UB-3, below mudstone in boring B-13-23, and at the mudline in borings B-6, B-7A, B-7B, B-14-23, and B-15-23. Diving exploration DE-1 also encountered sandstone of the Empire Formation at the mudline. The sandstone is typically gray to dark gray, fresh, extremely soft to soft, and very close to widely fractured with horizontal to inclined jointing. Sandstone was the predominant Empire Formation unit we encountered and appears to be massive based on our observations during drilling. Mudstone of the Empire Formation was also encountered at the mudline in boring B-13-23 near Guano Rock. The mudstone is typically dark gray, fresh, extremely soft to soft, blocky, and close to moderately closely fractured. Numerous samples of the Empire Formation contain marine shell fossils. The unconfined compressive strength and dry unit weight of the Empire Formation samples generally range from 23 to 1,816 pounds per square inch (psi) and 90 to 127 pounds per cubic foot (pcf), respectively. One sample obtained at an elevation of approximately -35 ft in upland boring UB-1 has a significantly higher unconfined compressive strength and dry unit weight of 6,673 psi and 132 pcf, respectively. Core recovery and RDQ ranged from 0% to 100%.

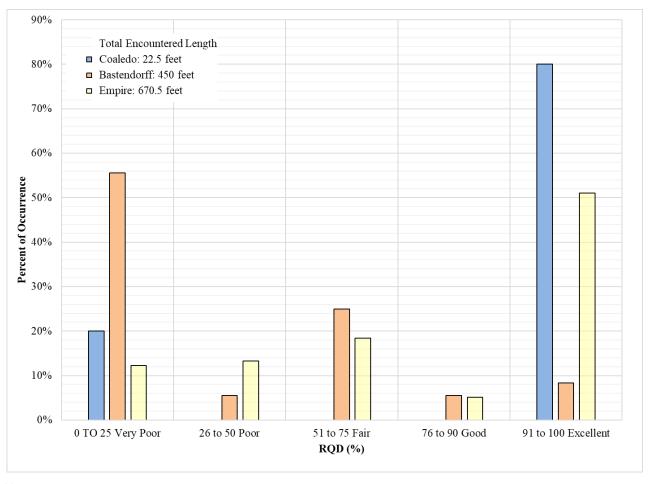
MUDSTONE/SILTSTONE (Bastendorff Formation). Mudstone/siltstone of the Bastendorff Formation was encountered below the sand in borings B-4A, B-16 through B-23, B-5-23, B-6-23, B-8-23 through B-11-23, and at the mudline in borings B-4B and B-5. The mudstone/siltstone is typically dark gray, fresh, extremely soft to very soft, and very closely to moderately closely fractured with horizontal to nearly vertical jointing and inclined bedding. The Bastendorff Formation occurs as siltstone and sandstone in an interbedded structure in boring B-5. Several samples of the Bastendorff Formation contain marine shell fossils. The unconfined compressive strength and dry unit weight of the Bastendorff Formation samples range from 180 psi to 912 psi and 94 pcf to 117 pcf, respectively. Core recovery ranged from 10% to 100%, and RQD ranged from 0% to 100%.


It should be noted that the Bastendorff Formation is described as Siltstone for the borings completed prior to 2023 and as Siltstone/Mudstone in the borings completed in 2023, where additional laboratory testing indicated the range of materials present. Additional discussion related to the use of these terms is provided in Section 4.0, Discussion.

SANDSTONE (Coaledo Formation). Sandstone of the Coaledo Formation was encountered below the sand in borings B-15 and B-4-23. Sandstone encountered at B-4-23 was embedded in the mudstone/siltstone. It should be noted that boring B-4-23 was completed near the estimated contact between the Bastendorff and Coaledo Formations at about RM 5.85. The sandstone encountered in boring B-4-23 appeared to be soft to medium hard, which is generally consistent with that observed in nearby boring B-15. The sandstone is typically gray, fresh, soft to hard, and closely to widely fractured with inclined jointing. Several samples of the Coaledo Formation contain marine shell fossils. The unconfined compressive strength and dry unit weight of the Coaledo Formation samples range from 1,150 psi to 11,361 psi and 124 pcf to 149 pcf, respectively. Core recovery was 100%, and Rock Quality Designation (RQD) ranged from 95% to 100%.

Charts 3-1 and 3-2 present a summary of Unconfined Compressive Strength (UCS) and RQD for the various rock formations encountered by our subsurface explorations. As shown on Chart 3-1,

the Very Soft and Soft rock hardness categories were subdivided to better display the distribution of rock hardness within each rock formation. It should be noted that the UCS test can only be completed on rock cores of sufficient length and competency. Consequently, the extremely soft rock encountered by our subsurface explorations in the Empire and Bastendorff formations is not generally represented in Chart 3-1. The RQD values presented in Chart 3-2 encompass all rock coring completed for the project.


Chart 3-1
Histogram of UCS Values for Coaledo Sandstone, Bastendorff Siltstone, and Empire Sandstone Formations

Notes:

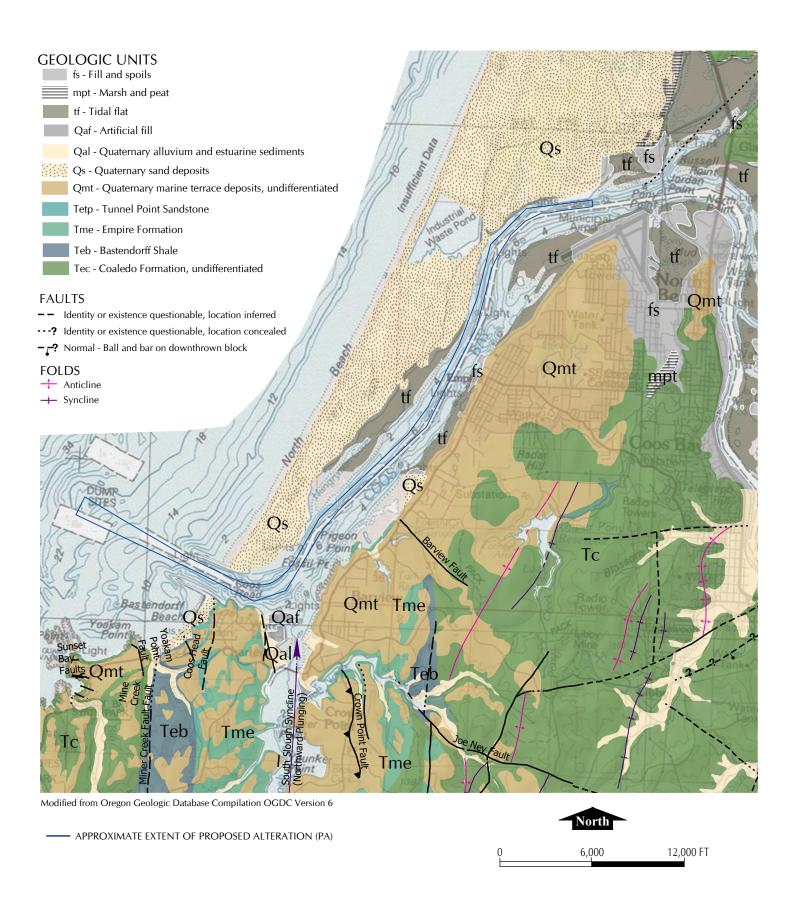
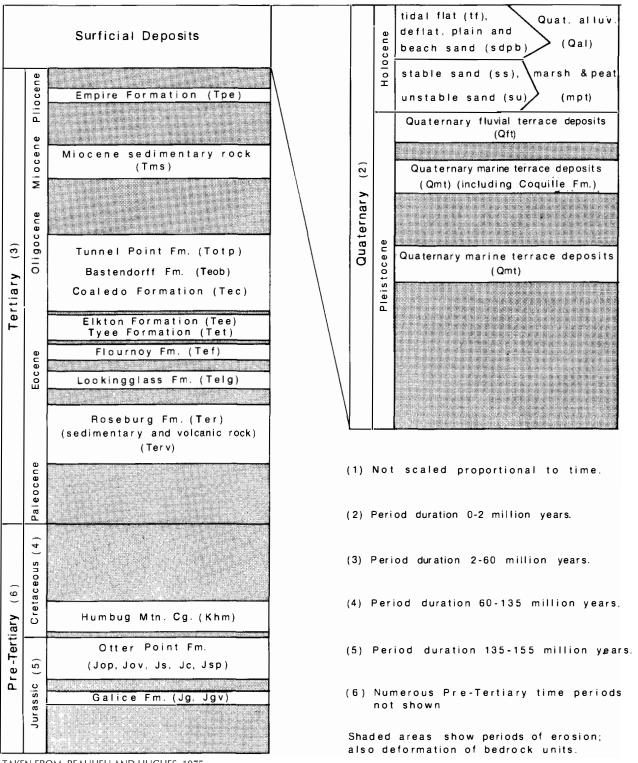

1. The UCS test can only be completed on rock core of sufficient length and competency.

Chart 3-2
Histogram of RQD Values for Coaledo Sandstone, Bastendorff Siltstone, and Empire Sandstone Formations


Notes:

1. The percentage of occurrence is relative to the length of rock core drilled for each formation represented in Chart 3-2, not to the total length of rock core drilled during the subsurface exploration programs.

1. THE LOCATIONS OF ALL FEATURES SHOWN ARE APPROXIMATE.
2. THIS DRAWING IS FOR INFORMATION PURPOSES. IT IS INTENDED TO ASSIST IN SHOWING FEATURES DISCUSSED IN AN ATTACHED DOCUMENT. GRI CANNOT GUARANTEE THE ACCURACY AND CONTENT OF ELECTRONIC FILES. THE MASTER FILE IS STORED BY GRI AND WILL SERVE AS THE OFFICIAL RECORD OF THIS COMMUNICATION.

Figure 3-0: Regional Geologic Map

TAKEN FROM: BEAULIEU AND HUGHES, 1975

Figure 4-0: Stratigraphic Column Of Geologic Units

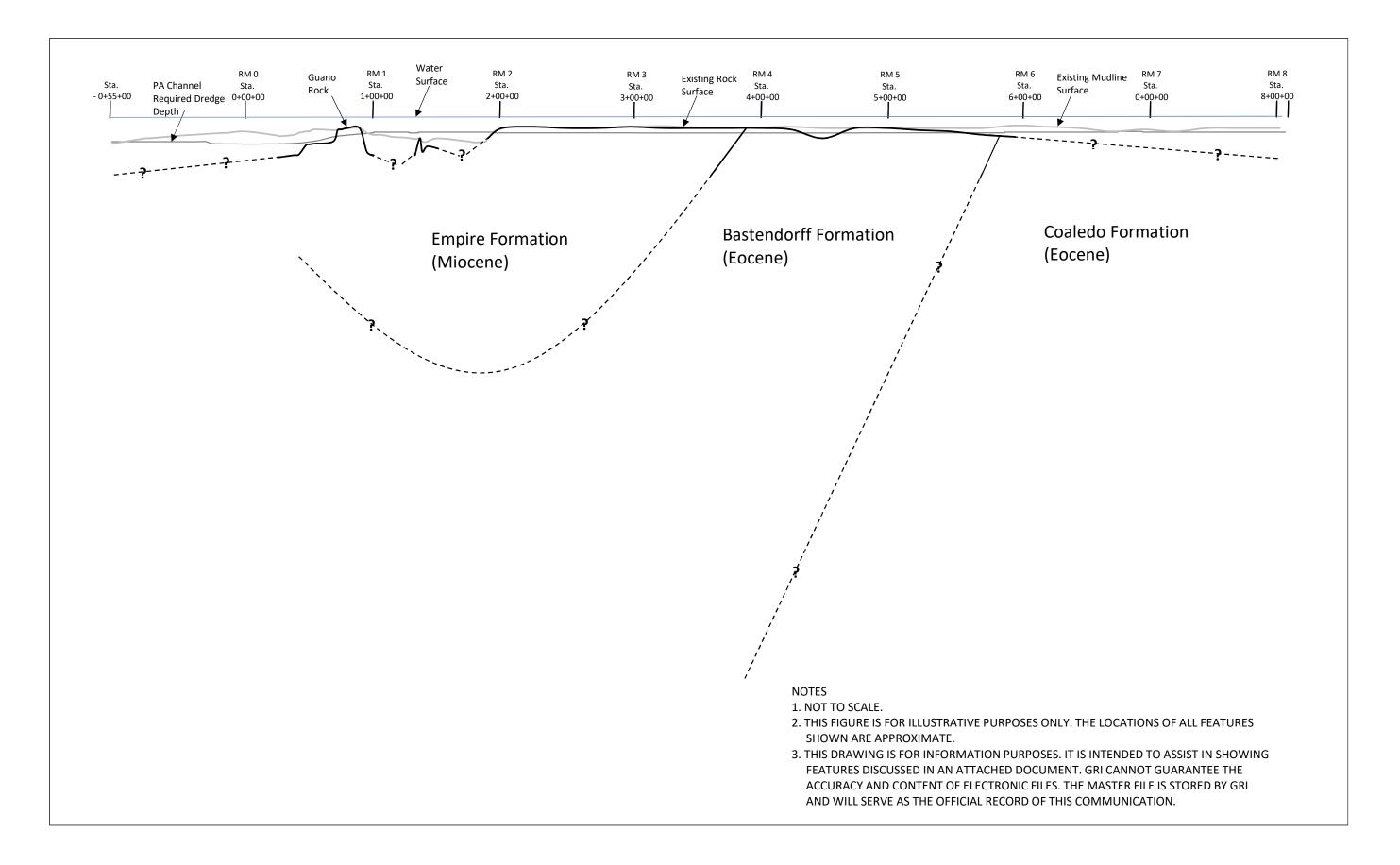
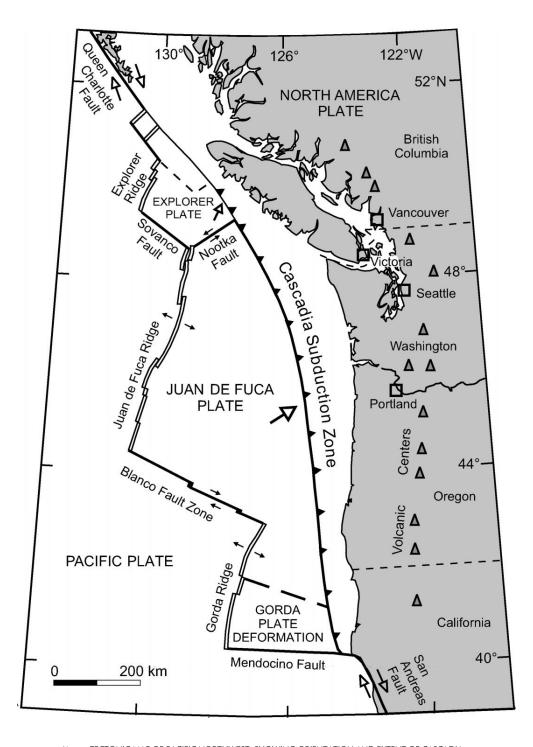
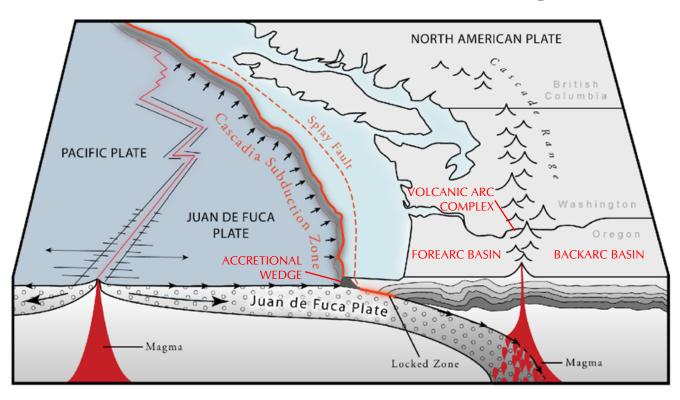




Figure 5-0: Schematic Geologic Cross Section, PA Channel Centerline

A) TECTONIC MAP OF PACIFIC NORTHWEST, SHOWING ORIENTATION AND EXTENT OF CASCADIA SUBDUCTION ZONE (MODIFIED FROM WANG, K., AND OTHERS, 1994)

Cascadia Subduction Zone Setting

MODIFIED FROM CASCADIA SUBDUCTION ZONE SETTING, TSUNAMI INUNDATION MAPS, OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRY, 2013

Figure 6-0: Tectonic Setting Summary

4. DISCUSSION

In general, the recent explorations disclosed subsurface conditions similar to previous exploration programs. Exceptions were encountered in upland boring UB-1 and previous overwater boring B-15, where substantially harder rock was encountered. The harder material encountered in UB-1 is likely associated with a lens (< 1 ft thick) of strongly cemented material. The harder material in B-15 is associated with the Coaledo Formation and was coarser grained and more strongly cemented at the location of the boring compared to the adjacent geologic formation. Relatively hard sandstone was also encountered at depth in boring B-4-23, which was also completed in Coaledo Formation near B-15.

Previous investigations completed by the USACE in 1974 and 1994 described fine-grained rock of the Bastendorff Formation as either claystone, claystone/mudstone, or claystone/siltstone; however, the Port described the same fine-grained rock as siltstone. The Port is using the term siltstone to describe the fine-grained sedimentary rocks within the project area; however, the reader should be aware that variability, as well as fine-grained sedimentary rocks with clay-sized to coarse-grained, sand-size particles, will be encountered. Specifically, the majority of the explorations used the term siltstone to describe claystone, mudstone, and siltstone. However, for the 2023 to 2024 exploration program, where substantial additional explorations and laboratory testing were completed in the Bastendorff Formation, the Mudstone/Siltstone designation was used.

The 1974 USACE investigation approximated the contact between the Bastendorff and Empire formations at RM 3; however, based on our observations during drilling and our interpretation of available geologic information, the contact is estimated to be near RM 4. Additionally, the 1974 USACE investigation approximated the contact between the Bastendorff and Coaledo formations at RM 5; however, based on our observations during drilling and interpretation of available geologic information, the contact is estimated to be near RM 6. Wood debris was also encountered in borings B-3, B-6-23, and B-7-23 in the Bastendorff Formation.

5. LIMITATIONS

This data report has been prepared by GRI to assist the OIPCB in the design and evaluation of this project. The scope is limited to the specific project location described herein. The findings submitted in this report are based on the data obtained from the subsurface explorations made at the locations indicated on the Exploration Site Plans and other sources of information discussed in this report. In the performance of subsurface investigations, specific information is obtained at specific locations at specific times. However, it is acknowledged that variations in soil and rock conditions may exist between subsurface exploration locations. This report does not reflect any variations that may occur between these subsurface explorations.

6. REFERENCES

- Addicott, W. O., 1983. Biostratigraphy of the marine Neogene sequence at Cape Blanco, Southwestern Oregon: US Geological Survey, Professional Paper 774-C: G1–G20.
- Beaulieu, J. D., and Hughes P.W., 1975, Environmental geology of western Coos and Douglas counties, Oregon: Oregon Department of Geology and Mineral Industries Bulletin 87.
- Beaulieu, J. D., and Hughes P.W., 1976, Land-use geology of western Curry County, Oregon: Oregon Department of Geology and Mineral Industries, Bulletin 90.
- Black, G. L., and Madin, I. P., 1995, Geologic map of the Coos Bay quadrangle, Coos County, Oregon: State of Oregon Geological Map Series GMS-97, 1 sheet, scale 1:24,000.
- Diller, J. S., 1899, Coos Bay coal field, Oregon: U.S. Geological Survey, 19th Annual Report, pt. 3, pp. 309-370.
- Goldfinger, C., Kulm, L. D., Yeats, R. S., Appelgate, B., MacKay, M. E., and Moore, G. F., 1992, Transverse structural trends along the Oregon convergent margin--Implications for Cascadia earthquake potential and crustal rotations: Geology, v. 20, pp. 141-144.
- Madin, I. P., McInelly, G. W., and Kelsey, H. M., 1995, Geologic map of the Charleston quadrangle, Coos County, Oregon: State of Oregon Geological Map Series GMS-94, scale 1:24,000.
- Moore, J. M., 1963, Miocene marine mollusks from the Astoria Formation in Oregon: U.S. Geological Survey, Professional Paper 419.
- Oles, K. F., Johnson, J. G., Niem, A. R., and Niem, W. A., 1980, Geologic field trips in Western Oregon and Southwestern Washington: State of Oregon, Department of Geology and Mineral Industries, pp. 195-198.
- Oregon International Port of Coos Bay (OIPCB), 2019, Coos Bay, Oregon Section 204(f)/408 channel modification project: Dredged material management plan (DMMP): prepared by Moffatt & Nichol, April 2019.
- Peterson, C., Stock, E., Cloyd, C., Beckstrand, D., Clough, C., Erlandson, J., Hart, R., Murillo, J., Percy, D., Price, D., Reckendorf, F., and Vanderburgh, S., 2005, Dating and morphostratigraphy of coastal dune sheets from the central west coast of North America: Oregon Sea Grant Publications.
- Turner, F. E., 1938, Stratigraphy and mollusca of the Eocene of western Oregon: Geological Society of America, Special Paper 10, 130 pages.
- U. S. Army Corps of Engineers (USACE), 2012, Coos Bay jetties preliminary major maintenance report appendix b: coastal engineering: prepared by Moffatt & Nichol for USACE, Portland District, July 2012.
- Wells, F. G., and Peck, D. L., 1961, Geologic map of Oregon west of the 121st meridian: U.S. Geol. Survey and Oregon Department of Geology and Mineral Industries.

Table of Contents – Appendix A

A-1.0 Field	Explorations	A-1
A-1.1	Overwater Borings	A-1
A-1.1.	.1 Comments on Mudline and Rock Elevations	A-4
A-1.1	.2 Comments on Drilling Conditions	A-4
A-1.2	Upland Borings	A-5
A-1.3	Jet Probes	A-6
A-1.4	Diving Exploration	A-7

List of Tables – Appendix A

Table 1A.	Guidelines fo	or Classification	of Soil	 	A-8
Table 2A.	Guidelines fo	or Classification	of Rock		A-10

List of Figures – Appendix A

Figures 1A through 58A Boring Logs

Figure 59A Diving Exploration Log

Figures 60A through 67A Rock Core Photographs from 2010

Figures 68A through 92A Rock Core Photographs from 2016

Figures 93A through 96A Rock Core Photographs from 2023

A-1.0 FIELD EXPLORATIONS

The subsurface exploration programs for this project were completed during six separate mobilizations. The first mobilization occurred between September 8 and 17, 2010. Subsequent mobilizations were completed as funding for the project was available and the project design advanced. The second and third mobilizations occurred between July 14 and August 12, 2016, and between October 31 and November 3, 2016, respectively. The purpose of the second and third mobilizations was to complete additional overwater borings to further supplement previous geotechnical and geophysical exploration programs and further evaluate the strength and material characteristics of rock and overlying materials located within the proposed dredge prism. The fourth mobilization occurred between March 22 and April 21, 2017. The purpose of the fourth mobilization was to complete jet-probe explorations to further supplement geophysical and subsurface explorations and further support further development of the sediment and rock surface within the channel. The fifth mobilization occurred between October 25 and 27, 2017. The primary purpose of the fifth mobilization was to help evaluate the strength and material characteristics of rock at Guano Rock. The sixth mobilization occurred between October 2nd and November 7th 2023. The primary purpose of the sixth mobilization was to help evaluate the strength and material characteristics of rock at Guano Rock as well as materials further upriver in the proposed turning basin near Empire and other areas.

Subsurface materials and conditions within the project area were investigated with overwater, upland, and diving explorations. The overwater subsurface explorations included 54 overwater borings and 56 jet probes. The overwater borings were designated as B-1 through B-3, B-4A, B-4B, B-5, B-6, B-7A, B-7B, B-8 through B-34, B-37, B-38, and B-40. Borings B-35, B-36, and B-39 could not be completed due to the amount of ocean swell at these locations. The 2023 overwater explorations, completed using a hydraulic jack-up barge, are designated B-1-23 through B-15-23. The jet probes were designated as JP-1 through JP-44, JP-51, JP-54, and JP-56 through JP-61. Jet probes JP-45 through JP-50, JP-52, JP-53, JP-55, and JP-62 were considered "Secondary Importance/Backup" or "Supplemental As Needed" by the PDT and were not completed. The upland subsurface explorations included three borings designated as UB-1 through UB-3. The diving exploration was designated as DE-1.

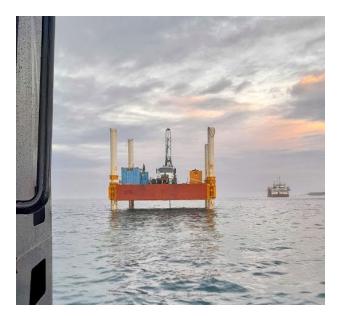
A-1.1 Overwater Borings

The overwater borings were observed and documented by a member of GRI's geotechnical engineering staff, who maintained a detailed log of the materials encountered during the course of the work.

Hardcore Drilling of Dundee, Oregon, completed the overwater borings during the 2010 and 2016 drilling operations using a truck-mounted CME 55 or CME 75 drill rig. The borings were advanced to depths of 6.5 ft to 42 ft below the existing mudline using mud-rotary or HQ rock-coring techniques. The depths of the borings were developed to coincide with an elevation of approximately 5 ft below the Maximum Allowable Overdepth. The spud barge and tugboat were provided and operated by Knutson Towboat of Coos Bay, Oregon. The barges for the two separate mobilizations measured between approximately 103 ft and 112 ft long and were 39 ft wide, 6 ft to 9 ft deep, and equipped with three 20-in.-diameter, steel pipe-pile spuds about 60 ft long. The pipe-pile spuds were mounted in three corners of the barge to stabilize the barge in the desired locations

during drilling. Drilling was completed off the back of the barge, with the operators working from a platform with a safety-rail system. Photographs taken during the 2010 and 2016 drilling operations are provided below. A Trimble handheld GPS unit, physical soundings, and bathymetric maps were used to locate the proposed boring locations.

Western States Soil Conservation, Inc. (WSSC) of Hubbard, Oregon, completed the 2023 overwater borings using a truck-mounted CME 75 drill rig. The borings were advanced to depths ranging from about 21 ft to 42 ft below mudline using mud-rotary or HQ rock-coring techniques. The depths of the borings were developed to target an elevation of at least 5 ft below the Maximum Allowable Overdepth. The hydraulic jack-up spud barge and tugboat were provided and operated by West Coast Contractors (WCC) of Coos Bay, Oregon.


The Flexifloat S-40 raft barge used for the 2023 mobilization measured approximately 60 ft long by 40 ft wide and was equipped with four jack leg spuds with total length between about 84 ft and 89 ft. The jack leg spuds were maneuvered up or down using hydraulic actuators located at each corner of the barge. The spuds were able to moved up and in approximately 2-foot increments in order to maintain stability of the platform. The use of a jack-up barge allowed drilling operations to take place near the mouth of the channel, where difficult weather, tide, and swell conditions are common. This allowed for the collection of samples at Guano Rock, where previous attempts using a floating barge had failed. Drilling from the jack-up barge was completed through a moon pool, or open hole, through the Flexifloat barge. Photographs taken during the 2023 drilling operations are provided below. A Trimble handheld GPS unit, physical soundings, and bathymetric maps were used to locate the proposed boring locations in 2023.

2010 Drilling Operations

2016 Drilling Operations

2023 Drilling Operations

When drilling in sand and silt using mud-rotary techniques, disturbed samples were obtained from the borings at 2.5- to 5-ft intervals of depth using a standard split-spoon sampler. At the time of sampling, the Standard Penetration Test (SPT) was conducted. This test consists of driving a standard split-spoon sampler into the soil a distance of 18 in. using a 140-pound (lb) hammer dropped from a height of 30 in. The number of blows required to drive the sampler the last 12 in. is known as the standard penetration resistance, or SPT N-value. SPT N-values provide a measure of the relative density of granular soils, such as sand, and the relative consistency, or stiffness, of cohesive soils, such as silt. The soil samples obtained in the split-spoon sampler were classified in the field, and selected portions were saved in airtight jars and bags for further examination and physical testing in GRI's laboratory.

When drilling in sandstone and mudstone/siltstone bedrock using HQ coring techniques, core samples were classified and photographed in the field prior to being sealed in core boxes and

returned to GRI's laboratories. Further rock testing was completed at external laboratories. For rock sampled during the 2010 and 2015 drilling operations, rock samples were sent to Cooper Testing Labs in McMinnville, Oregon. For the 2023 drilling operations, core samples were sent to Intertek PSI Portland Lab in Portland, Oregon, and GeoTesting Express, LLC lab in Acton, Massachusetts.

Logs of the overwater borings are provided on Figures 1A through 39A and 43A through 58A. Each log provides a description of the various materials encountered in the boring and notes the depths at which the materials and/or characteristics of the materials change. To the right of the descriptive summary, the numbers and types of samples taken during the drilling operation are indicated. Farther to the right, SPT N-values, fractures per ft, sample recovery, and rock quality designation (RQD) are shown graphically, along with pertinent laboratory testing results. The terms used to describe the materials encountered in the borings are defined in Tables 1A and 2A.

Core-sample photographs are provided after the boring logs.

A-1.1.1 Comments on Mudline and Rock Elevations

The mudline elevations reported herein for the geotechnical borings should be considered approximate and were developed using the following methodology:

- 1. Tidal-water level elevations were taken from the National Oceanic and Atmospheric Administration (NOAA) Tide Prediction tables for the nearest Coos Bay tidal station (e.g., Charleston, Sitka Dock, Empire).
- 2. The tidal-water level elevations were corrected for time of day and distance of the drilling operations from the tidal station.
- 3. A GRI field representative took several depth soundings from the barge deck to mudline at the location of the drilling equipment.
- 4. The distance from the barge deck to the water was subtracted from the depth taken in Step 3. This final depth was the depth from water level to mudline.
- 5. The depth noted in Step 4 was subtracted from the elevation noted in Step 1, which resulted in the approximate mudline elevation for the borings.
- 6. Observed and predicted tidal-water elevation data are provided by NOAA for the Charleston tidal station. Where applicable, the elevation noted in Step 2 was corrected for differences between observed and predicted tidal-water elevations.

The vertical uncertainty of elevations associated with the preceding procedure is estimated to be approximately +/- 1 ft.

David Evans and Associates, Inc., (DEA) completed more-detailed GPS surveying for the jet-probe explorations, discussed separately (see Sub-Appendix 2 – Geophysical Assessment and Reports).

A-1.1.2 Comments on Drilling Conditions

In some cases, the boreholes were not advanced to the desired depths due to tidal conditions or excessive barge movement. For example, during the 2010 exploration program, boring B-7A could not be drilled to the desired depth/elevation due to large ocean swells and excessive barge movement. The barge was then moved, and boring B-7B was drilled to complete the exploration to

the target drilling elevation. Several attempts were made to drill boring B-9, but severe ocean swells prevented the driller from advancing below elevation -34.5 ft. Three potential borings (B-35, B-36, and B-39) were attempted during the 2016 drilling effort but not completed due to ocean swells and excessive barge movement. Conversations with Knutson Towboat indicate the conditions during the period these borings were attempted were very favorable. After the 2016 drilling efforts, GRI provided scoping documents for a jack-up barge, subfloor drill, or other exploration techniques to increase the likelihood of completing borings near the mouth of the channel. During the 2023 drilling efforts, a total of three explorations were able to be completed successfully from a jack-up barge near the entrance of the bay at Guano Rock. It should be noted that ideal swell conditions were still necessary to complete the explorations at Guano Rock with the jack-up barge configuration utilized. The duration to complete explorations is also impacted by the ability to set and pull drill casing, which is typically not possible except in slack tide conditions due to strong currents in the bay.

A-1.2 Upland Borings

The upland borings were observed and documented by a member of GRI's geotechnical engineering staff, who maintained a detailed log of the materials encountered during the course of the work.

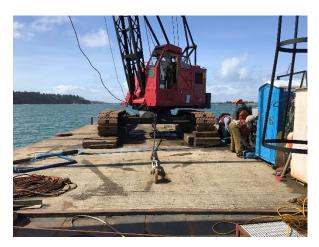
Hardcore Drilling of Dundee, Oregon, completed the upland borings using a track-mounted CME 55 drill rig. The borings were advanced to depths of 70 ft to 79 ft below the existing ground surface using mud-rotary or HQ rock-coring techniques. The depths of the borings were developed to coincide with an elevation of approximately 5 ft below the Maximum Allowable Overdepth presented in the Moffatt & Nichol 30% design submittal. Photographs taken during the 2016 drilling operations are provided below. A Garmin handheld GPS unit was used to locate the proposed boring locations.

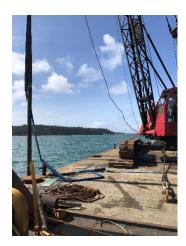
2016 Drilling Operations

When drilling in sand and silt using mud-rotary techniques, disturbed samples were obtained from the borings at 2.5- to 5-ft intervals of depth using a standard split-spoon sampler. At the time of sampling, the SPT was conducted as previously described in Section A-1.1 of this appendix. The soil samples obtained in the split-spoon sampler were classified in the field, and representative portions were saved in airtight jars for further examination and physical testing in GRI's laboratory.

When drilling in sandstone bedrock using HQ coring techniques, core samples were classified and photographed in the field prior to being sealed in core boxes and returned to either GRI's Beaverton, Oregon, laboratory or Cooper Testing Labs' McMinnville, Oregon, laboratory for further examination and physical testing.

Logs of the upland borings are provided on Figures 40A through 42A. Each log provides a description of the various materials encountered in the boring and notes the depths at which the materials and/or characteristics of the materials change. To the right of the descriptive summary, the numbers and types of samples taken during the drilling operation are indicated. Farther to the right, SPT N-values, fractures per foot, sample recovery, and RQD are shown graphically, along with pertinent laboratory testing results. The terms used to describe the materials encountered in the borings are defined in Tables 1A and 2A.


The elevation of the ground surface at the location of each boring was approximated using elevation data from the 2010-2011 U. S. Army Corps of Engineers (USACE) Joint Airborne Light Detection and Ranging (LiDAR) Bathymetry Technical Center of Expertise (JALBTCX) for the vicinity of the upland borings.


Core-sample photographs are provided after the boring logs.

A-1.3 Jet Probes

The jet-probe explorations were surveyed by a marine surveyor from DEA and observed and documented by a member of GRI's geotechnical engineering staff. Data collected as part of the jet-probe explorations are included in Table 3-3.

The jet-probe process used a stream of pressurized water directed downward through a steel pipe to allow the steel pipe probe to sink into the alluvial sediment to the top of rock, where it was present. The jet-probe equipment was suspended from a barge-mounted crane. The barge, tugboat, crane, and jet probe were provided and operated by Knutson Towboat Company (Knutson) of Coos Bay, Oregon. The barge measured approximately 108 ft long and 32 ft wide. The tugboat measured approximately 54 ft long and 22 ft wide. The 90-ft-long, 6-in.-diameter jet probe was moved and operated with a 30-ton crane with a 100-ft-long boom. The weight of the jet probe was approximately 1,800 lbs empty. At locations between about River Mile (RM) 0 and RM 2, the barge generally utilized the tug to maintain position of the barge at the jet-probe locations. Upstream of about RM 2, the barge generally utilized spuds to maintain position of the barge at the jet-probe locations. Photographs taken during the 2017 jet-probe operations are provided below.

2017 Jet Probe Operations

The following is a general description of the sequence of work to complete the jet probes:

- 1. DEA personnel were responsible for helping Knutson navigate to the proposed jet-probe locations for surveying the final location of the jet probes and surveying the elevations of jet-probe refusal or elevation of full penetration without reaching refusal. DEA fixed a GPS antenna to the top of crane boom to measure the horizontal location of the jet probes. The elevations of the jet probes were measured through a combination of instrumentation and utilizing markers every 1 ft along the shaft of the jet probe. Additional instrumentation and monitoring equipment were located throughout the barge and tugboat to further aid DEA's navigation and survey work.
- 2. Once the jet-probe apparatus was positioned at the desired location, the probe was slowly lowered by the crane to the top of the water and then at a constant rate to the mudline. The mudline was estimated by a slower rate of penetration of the jet probe into the mudline than through the water column. The probe was then raised several feet above the mudline to ensure the nozzle was not blocked, and the water pump was switched on. The water pressure varied between about 75 psi and 100 psi to penetrate the sediment.
- 3. The probe was lowered by the crane until refusal was obtained. Upon reaching refusal, the jet-probe apparatus was raised and lowered 1 ft to 2 ft several times, and further penetration was attempted. If further penetration was not observed, the final depth was recorded. Following refusal, the jet-probe apparatus was raised about 1 ft and the water pressure was increased to full-pump capacity to confirm refusal.

A-1.4 Diving Exploration

The diving exploration was observed and documented by a member of GRI's geotechnical engineering staff, who maintained a detailed log of the materials encountered during the course of the work.

Global Diving and Salvage, Inc., (Global) of Seattle, Washington, completed the diving exploration with a hydraulically driven, diver-operated chisel. All work was conducted from an approximately 76-ft-long chartered research vessel operated by Miss Linda Boat Charters of Coos Bay, Oregon. The vessel maintained position through an anchor spread. It should be noted that the diving

exploration was planned to be completed using rock-coring techniques with a hydraulically driven, diver-operated core drill to a maximum depth of approximately 9 ft below mudline elevation. However, limited slack-tide window durations, highly variable water-current direction and associated excessive movement of the vessel, and difficulty setting rock anchors for the core-drill base plate did not allow for completion of the exploration as planned.

The exploration was advanced to a depth of approximately 1.5 ft below the existing mudline. GPS equipment on the Miss Linda Boat Charters vessel was used to locate the proposed exploration location. When excavating the diving exploration, grab samples were obtained at continuous intervals to the total depth explored. The samples were classified in the field before being placed in a container and returned to GRI's Beaverton, Oregon, laboratory for further examination and physical testing.

2017 Diving Exploration Operations

A log of the diving exploration is provided on Figure 59A. The log provides a description of the various materials encountered in the exploration and notes the depths at which the materials and/or characteristics of the materials change. To the right of the descriptive summary, the numbers and types of samples taken during the drilling operation are indicated. The terms used to describe the materials encountered in the borings are defined in Table 2A.

Table 1A
Guidelines for Classification of Soils
Description of Relative Density for Granular Soil³

Relative Density	Standard Penetration Resistance (N-values) blows per ft
Very Loose	0 – 4
Loose	4 – 10
Medium Dense	10 – 30
Dense	30 – 50
Very Dense	over 50

Description of Consistency for Fine-Grained (Cohesive) Soil

Consistency	Standard Penetration Resistance (N-values) blows per ft	Torvane or Undrained Shear Strength, tsf
Very Soft	0-2	less than 0.125
Soft	2 – 4	0.125 – 0.25

³ Oregon Department of Transportation (ODOT) – Highway Division, 1987, Soil and Rock Classification Manual. Accessed: ftp://ftp.odot.state.or.us/techserv/Geo-Environmental/Geotech/Manuals/Soil_Rock_Classification_Manual.pdf

Description of Consistency for Fine-Grained (Cohesive) Soil

Consistency	Standard Penetration Resistance (N-values) blows per ft	Torvane or Undrained Shear Strength, tsf	
Medium Stiff	4 – 8	0.25 – 0.50	
Stiff	8 – 15	0.50 – 1.0	
Very Stiff	15 – 30	1.0 – 2.0	
Hard	over 30	over 2.0	

Sandy silt materials which exhibit general properties of granular soils are given relative density description.

Grain-Size Classification	Modifier for Subclassification		
Boulders		Percentage of	
12 – 36 in.		Other Material	
	Adjective	In Total Sample	
Cobbles		_	
3 – 12 in.	clean	0 – 2	
	trace	2 – 10	
Gravel	some	10 – 30	
1/4 - 3/4 in. (fine)	sandy, silty,		
3/4 - 3 in. (coarse)	clayey, etc.	30 – 50	
Sand			
No. 200 – No. 40 sieve (fine)			
No. 40 – No. 10 sieve (medium)			
No. 10 – No. 4 sieve (coarse)			
Silt/Clay – pass No. 200 sieve			

Table 2A Guidelines for Classification of Rock⁴

Relative Rock Weathering Scale

Term	Field Identification		
Fresh	Crystals are bright. Discontinuities may show some minor surface staining. No discoloration in rock fabric.		
Slightly Weathered	Rock mass is generally fresh. Discontinuities are stained and may contain clay. Some discoloration in rock fabric. Decomposition extends up to 1 inch into rock.		
Moderately Weathered	Rock mass is decomposed 50% or less. Significant portions of rock show discoloration and weathering effects. Crystals are dull and show visible chemical alteration. Discontinuities are stained and may contain secondary mineral deposits.		
Predominantly Decomposed	Rock mass is more than 50% decomposed. Rock can be excavated with geologist's pick. All discontinuities exhibit secondary mineralization. Complete discoloration of rock fabric. Surface of core is friable and usually pitted due to washing out of highly altered minerals by drilling water.		
Decomposed	Rock mass is completely decomposed. Original rock "fabric" may be evident. May be reduced to soil with hand pressure.		

_

⁴ Oregon Department of Transportation (ODOT) – Highway Division, 1987, Soil and Rock Classification Manual. Accessed: ftp://ftp.odot.state.or.us/techserv/Geo-Environmental/Geotech/Manuals/Soil_Rock_Classification_Manual.pdf

Relative Rock Hardness Scale

Term	Hardness Designation	Field Identification	Approximate Unconfined Compressive Strength
Extremely Soft	R0	Can be indented with difficulty by thumbnail. May be moldable or friable with finger pressure.	< 100 psi
Very Soft	R1	Crumbles under firm blows with point of a geology pick. Can be peeled by a pocket knife and scratched with fingernail.	100 – 1,000 psi
Soft	R2	Can be peeled by a pocket knife with difficulty. Cannot be scratched with fingernail. Shallow indentation made by firm blow of geology pick.	1,000 – 4,000 psi
Medium Hard	R3	Can be scratched by knife or pick. Specimen can be fractured with a single firm blow of hammer/geology pick.	4,000 – 8,000 psi
Hard	R4	Can be scratched with knife or pick only with difficulty. Several hard hammer blows required to fracture specimen.	8,000 – 16,000 psi
Very Hard	R5	Cannot be scratched by knife or sharp pick. Specimen requires many blows of hammer to fracture or chip. Hammer rebounds after impact.	> 16,000 psi

RQD and Rock Quality

Relation of RQD and Rock Quality		-	Terminology for Planar Surface		
RQD (Rock	Description of				
Quality Designation), %	Rock Quality	_	Bedding	Joints and Fractures	Spacing
0 – 25	Very Poor		Laminated	Very Close	< 2 in.
26 – 50	Poor		Thin	Close	2 in. – 12 in.
51 – 75	Fair		Medium	Moderately Close	12 in. – 36 in.
76 – 90	Good		Thick	Wide	36 in. – 10 ft
91 – 100	Excellent		Massive	Very Wide	> 10 ft

BORING AND TEST PIT LOG LEGEND

SOIL SYMBOLS

SOIL STAIDOLS			
Symbol	Typical Description		
\(\frac{1}{2}\frac{1}{1}\frac{1}{2}\frac{1}{	LANDSCAPE MATERIALS		
	FILL		
000	GRAVEL; clean to some silt, clay, and sand		
60°	Sandy GRAVEL; clean to some silt and clay		
	Silty GRAVEL; up to some clay and sand		
	Clayey GRAVEL; up to some silt and sand		
	SAND; clean to some silt, clay, and gravel		
O	Gravelly SAND; clean to some silt and clay		
	Silty SAND; up to some clay and gravel		
	Clayey SAND; up to some silt and gravel		
	SILT; up to some clay, sand, and gravel		
	Gravelly SILT; up to some clay and sand		
	Sandy SILT; up to some clay and gravel		
	Clayey SILT; up to some sand and gravel		
	CLAY; up to some silt, sand, and gravel		
	Gravelly CLAY; up to some silt and sand		
	Sandy CLAY; up to some silt and gravel		
	Silty CLAY; up to some sand and gravel		
	PEAT		

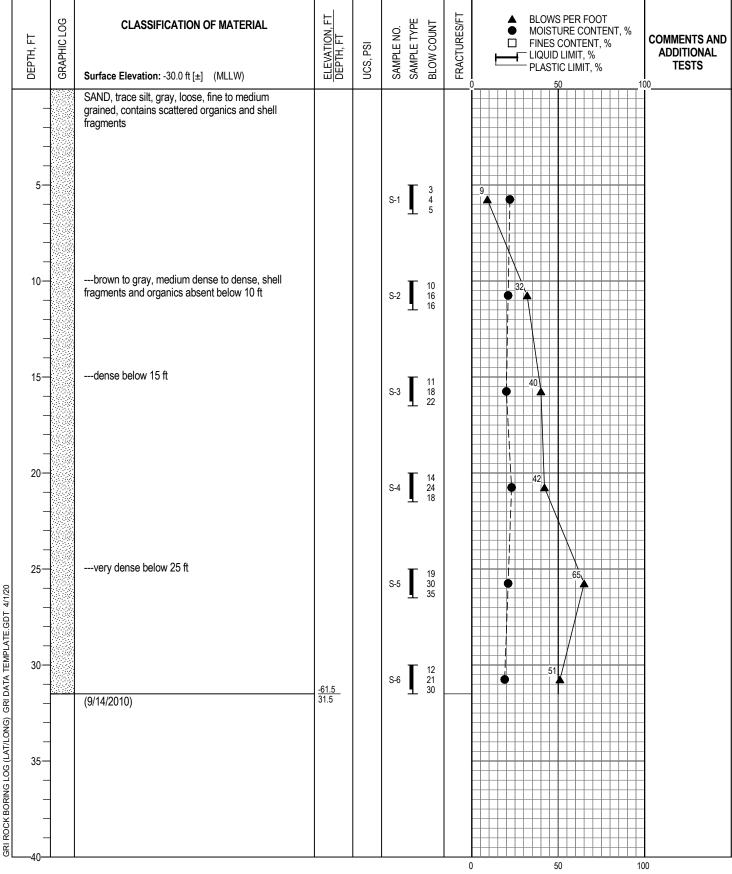
BEDROCK SYMBOLS

Symbol	Typical Description		
+++++++++++++++++++++++++++++++++++++++	BASALT		
	MUDSTONE		
	SILTSTONE		
	SANDSTONE		

SURFACE MATERIAL SYMBOLS

Symbol	Typical Description		
	Asphalt concrete PAVEMENT		
	Portland cement concrete PAVEMENT		
	Crushed rock BASE COURSE		

SAMPLER SYMBOLS


Symbol	Sampler Description		
Ī	2.0-in. O.D. split-spoon sampler and Standard Penetration Test with recovery (ASTM D1586)		
Ī	Shelby tube sampler with recovery (ASTM D1587)		
Ī	3.0-in. O.D. split-spoon sampler with recovery (ASTM D3550)		
X	Grab Sample		
	Rock core sample interval		
	Sonic core sample interval		
	Geoprobe sample interval		

INSTALLATION SYMBOLS

Symbol	Symbol Description		
	Flush-mount monument set in concrete		
	Concrete, well casing shown where applicable		
	Bentonite seal, well casing shown where applicable		
	Filter pack, machine-slotted well casing shown where applicable		
	Grout, vibrating-wire transducer cable shown where applicable		
P	Vibrating-wire pressure transducer		
	1-indiameter solid PVC		
	1-indiameter hand-slotted PVC		
	Grout, inclinometer casing shown where applicable		

FIELD MEASUREMENTS

Symbol	Typical Description		
$\bar{\Delta}$	Groundwater level during drilling and date measured		
Ī	Groundwater level after drilling and date measured		
	Rock core recovery (%)		
	Rock quality designation (RQD, %)		

Logged By: J. Gordon

Drilled by: Hard Core Drilling, Inc.

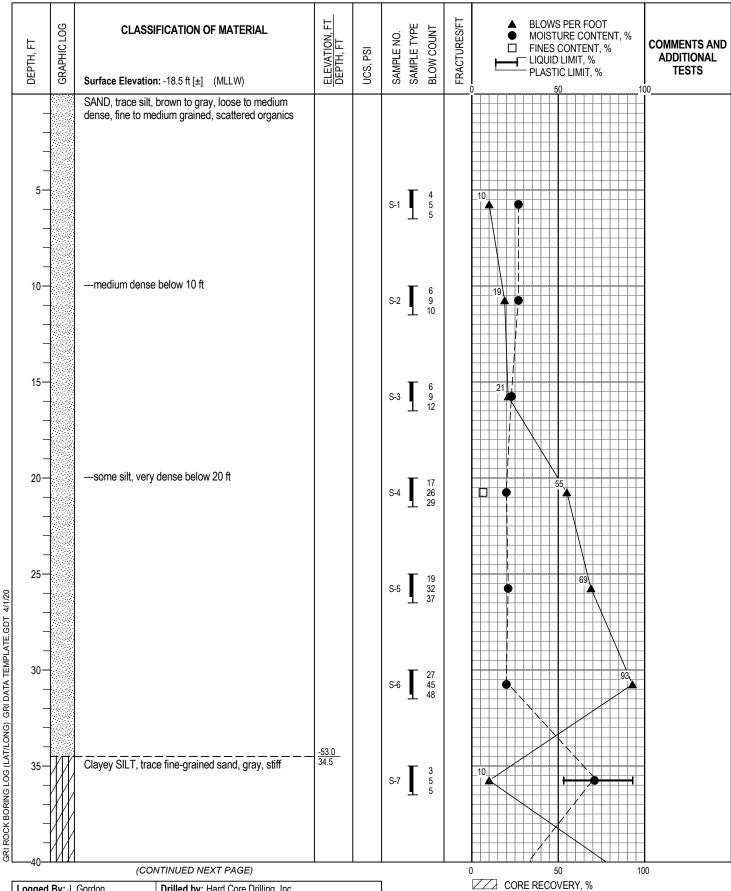
Date Started: 9/14/10

Coordinates: 43.42055556° N 124.26777778° W (WGS 84)

Drilling Method: Mud Rotary
Equipment: CME 55 Truck-Mounted Drill Rig
Hole Diameter: 5 in.

Note: See Legend for Explanation of Symbols

Prilling, Inc.


Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.
Energy Ratio: Not Available

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-1

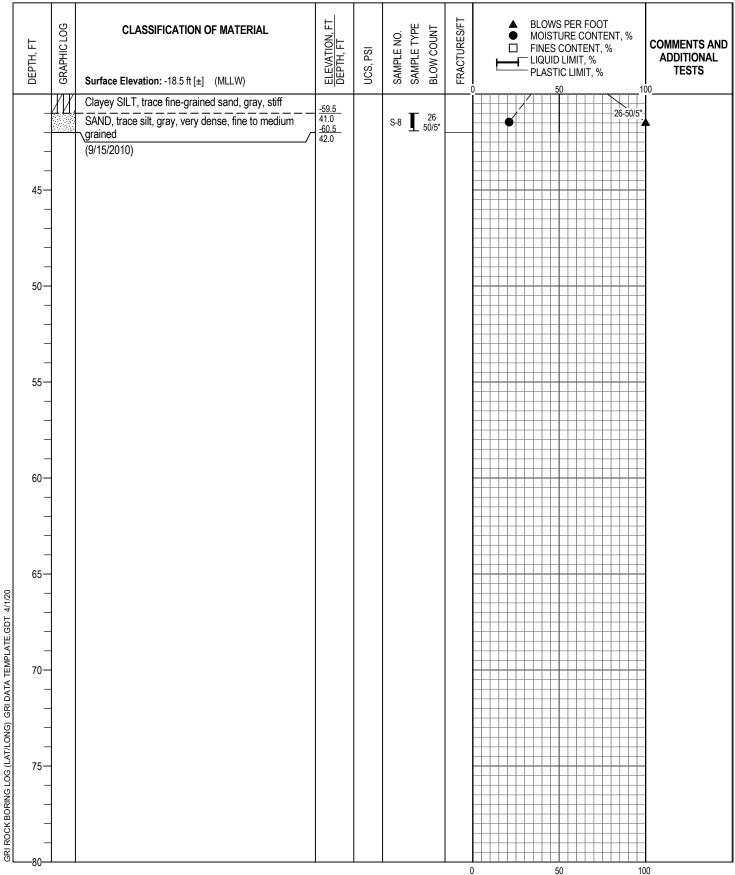
2020 JOB NO. 5128 FIG. 1A

 Logged By: J. Gordon
 Drilled by: Hard Core Drilling, Inc.

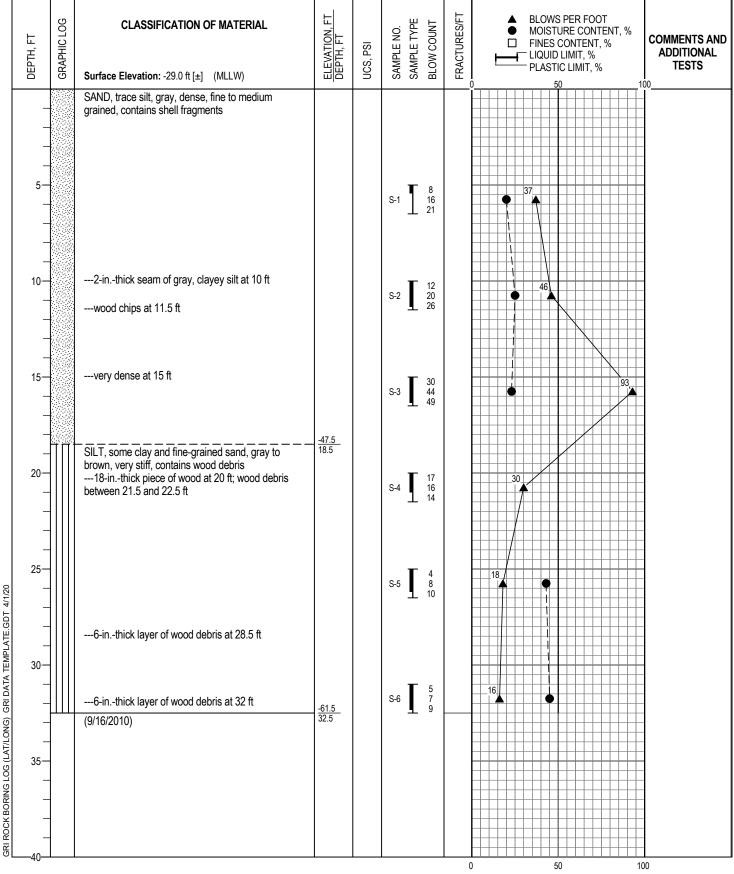
 Date Started: 9/15/10
 Coordinates: 43.40972222° N
 124.27527778° W (WGS 84)

 Drilling Method: Mud Rotary Equipment: CME 55 Truck-Mounted Drill Rig Hole Diameter: 5 in.
 Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.

 Note: See Legend for Explanation of Symbols
 Energy Ratio: Not Available


CORE RECOVERY, %

ROCK QUALITY DESIGNATION (RQD), %



BORING B-2

2020 JOB NO. 5128 FIG. 2A

Logged By: J. Gordon

Date Started: 9/16/10

Coordinates: 43.39694444° N

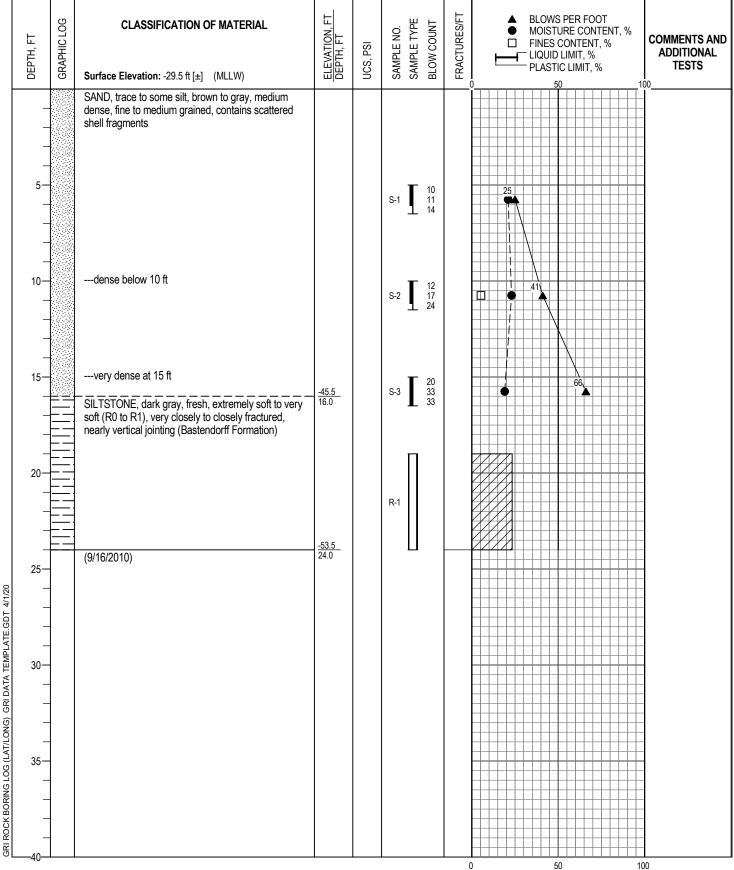
Drilling Method: Mud Rotary
Equipment: CME 55 Truck-Mounted Drill Rig
Hole Diameter: 5 in.

Note: See Legend for Explanation of Symbols

Drilling by: Hard Core Drilling, Inc.

124.28111111° W (WGS 84)

Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.
Energy Ratio: Not Available


CORE RECOVERY, %

ROCK QUALITY DESIGNATION (RQD), %

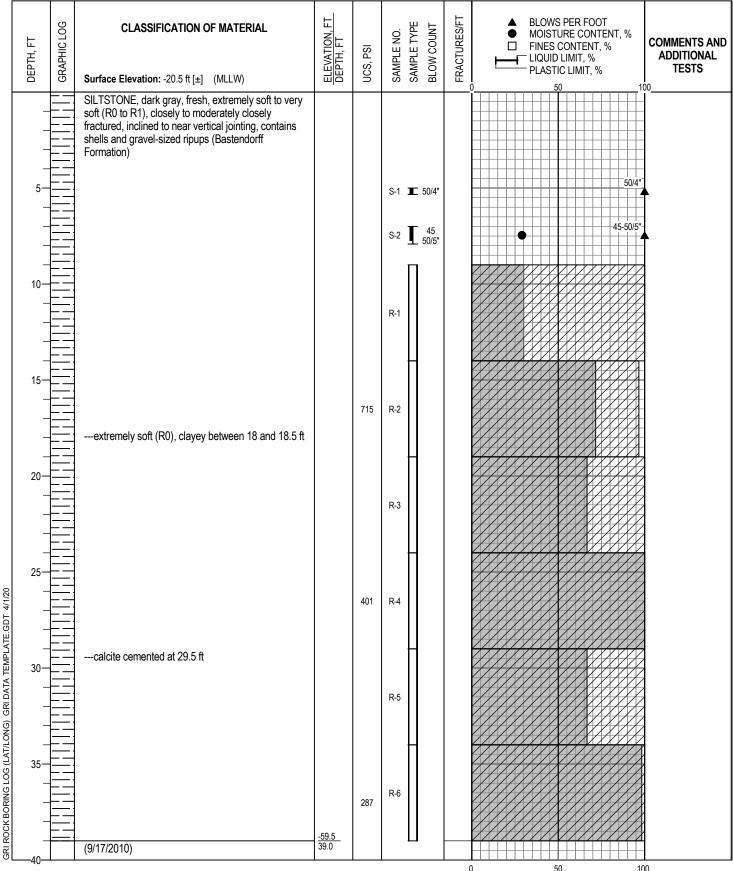
BORING B-3

2020 JOB NO. 5128 FIG. 3A

 Logged By: J. Gordon
 Drilled by: Hard Core Drilling, Inc.

 Date Started: 9/16/10
 Coordinates: 43.39277778° N
 124.28722222° W (WGS 84)

 Drilling Method: Mud Rotary Equipment: CME 55 Truck-Mounted Drill Rig Hole Diameter: 5 in.
 Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.


 Note: See Legend for Explanation of Symbols
 Energy Ratio: Not Available

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-4A

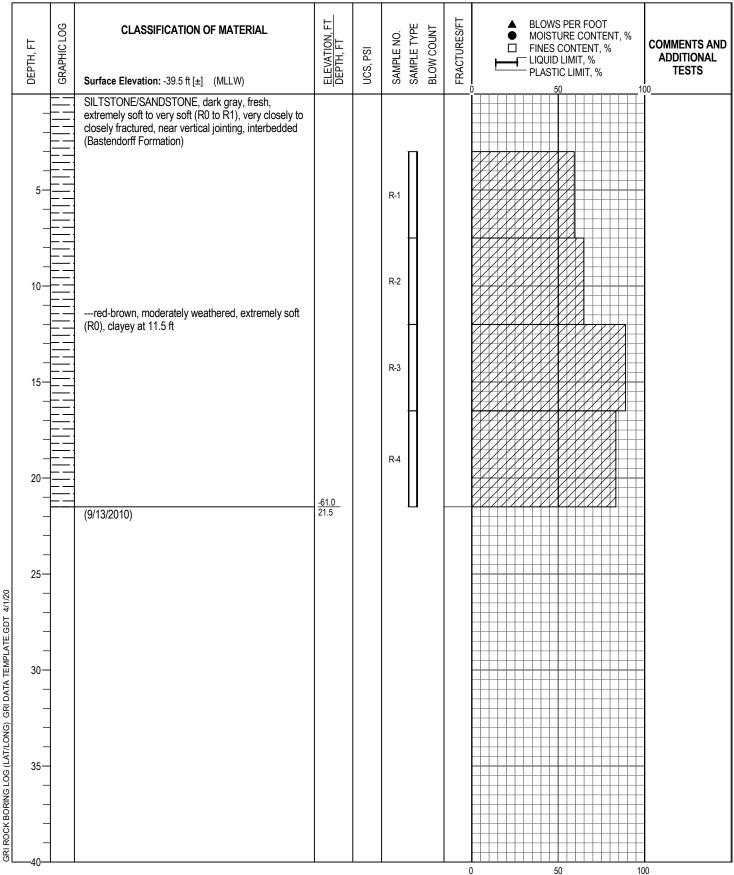
2020 JOB NO. 5128 FIG. 4A

 Logged By: J. Gordon
 Drilled by: Hard Core Drilling, Inc.

 Date Started: 9/17/10
 Coordinates: 43.39138889° N
 124.28472222° W (WGS 84)

 Drilling Method: Mud Rotary
 Hammer Type: Auto Hammer Weight: 140 lb

 Equipment: CME 55 Truck-Mounted Drill Rig Hole Diameter: 5 in.
 Weight: 140 lb


 Note: See Legend for Explanation of Symbols
 Energy Ratio: Not Available

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

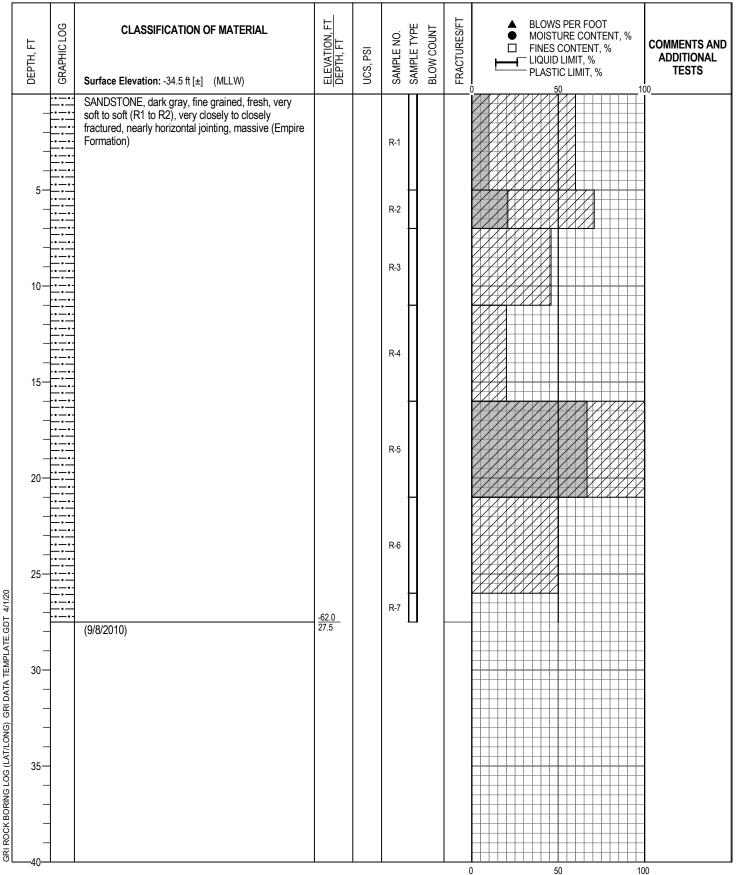
BORING B-4B

2020 JOB NO. 5128 FIG. 5A

 Logged By: J. Gordon
 Drilled by: Hard Core Drilling, Inc.

 Date Started: 9/13/10
 Coordinates: 43.38583333° N
 124.29083333° W (WGS 84)

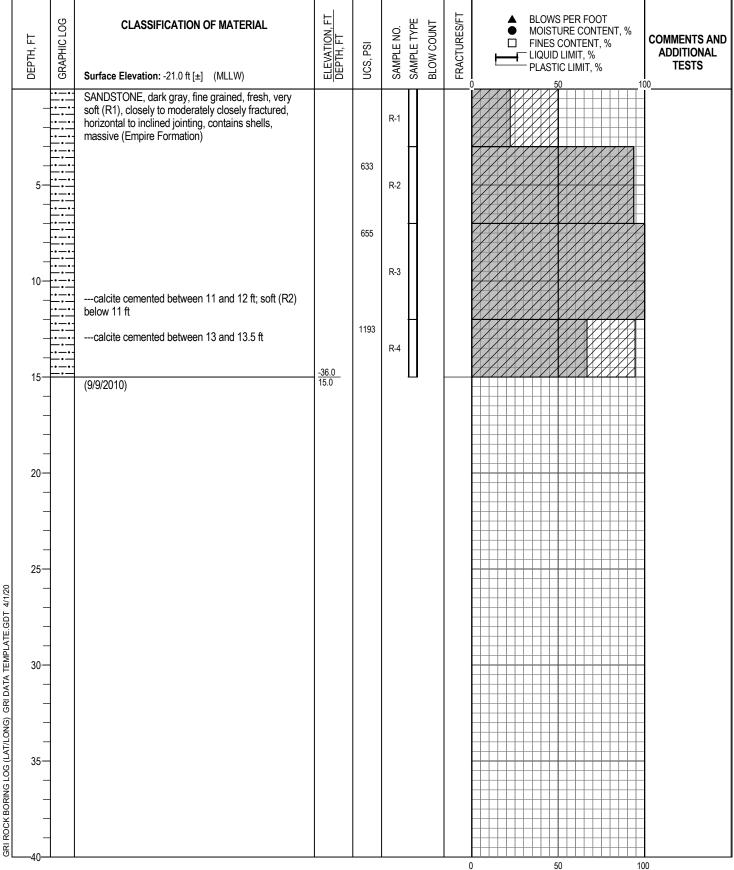
 Drilling Method: Mud Rotary Equipment: CME 55 Truck-Mounted Drill Rig Hole Diameter: 5 in.
 Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.


 Note: See Legend for Explanation of Symbols
 Energy Ratio: Not Available

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-5

2020 JOB NO. 5128 FIG. 6A


Logged By: J. GordonDrilled by: Hard Core Drilling, Inc.Date Started: 9/8/10Coordinates: 43.37305556° N124.30611111° W (WGS 84)Drilling Method: Mud Rotary
Equipment: CME 55 Truck-Mounted Drill Rig
Hole Diameter: 5 in.Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.Note: See Legend for Explanation of SymbolsEnergy Ratio: Not Available

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

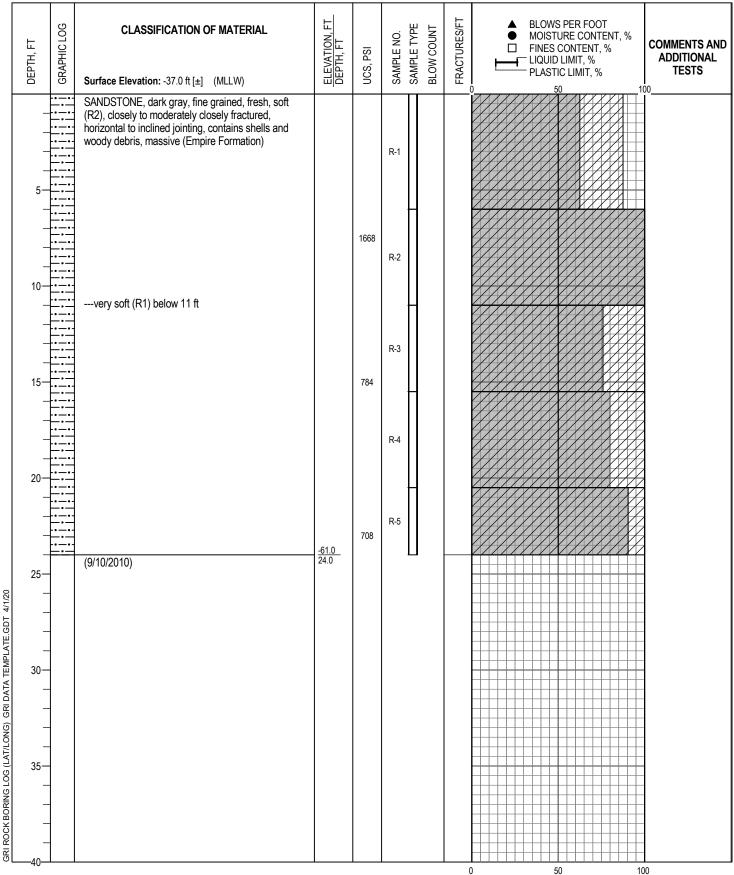
BORING B-6

2020 JOB NO. 5128 FIG. 7A

 Logged By: J. Gordon
 Drilled by: Hard Core Drilling, Inc.

 Date Started: 9/9/10
 Coordinates: 43.36444444° N
 124.31416667° W (WGS 84)

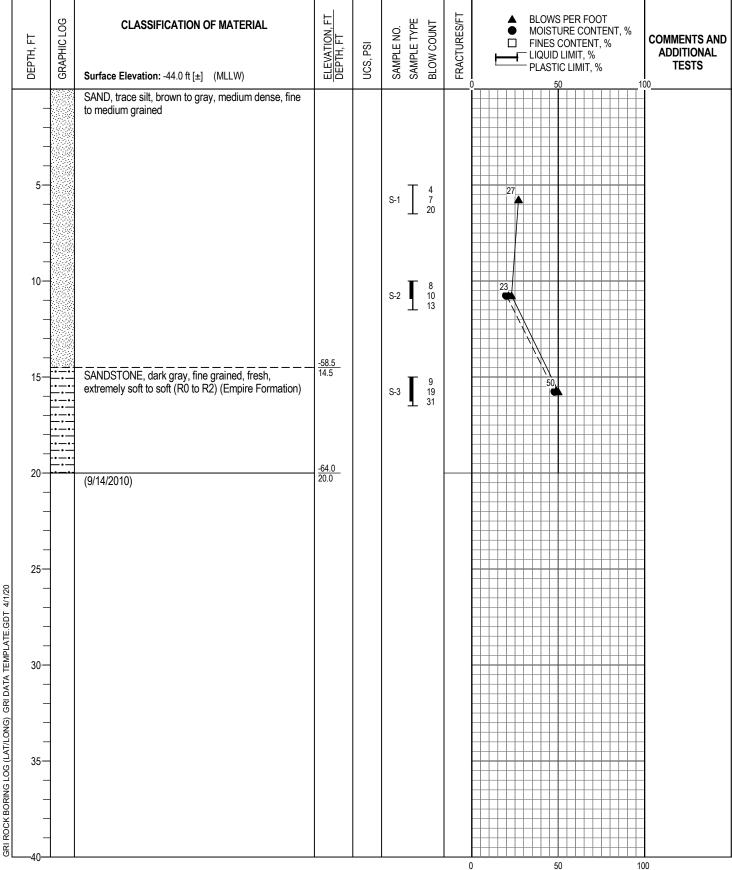
 Drilling Method: Mud Rotary Equipment: CME 55 Truck-Mounted Drill Rig Hole Diameter: 5 in.
 Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.


 Note: See Legend for Explanation of Symbols
 Energy Ratio: Not Available

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-7A

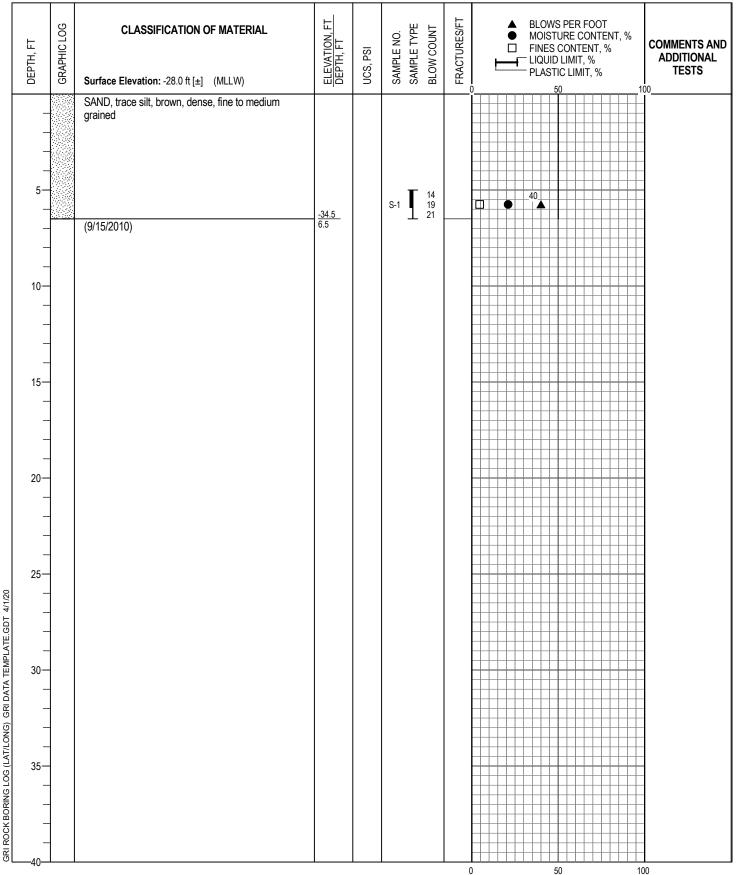
2020 JOB NO. 5128 FIG. 8A


Logged By: J. GordonDrilled by: Hard Core Drilling, Inc.Date Started: 9/10/10Coordinates: 43.36527778° N124.31416667° W (WGS 84)Drilling Method: Mud Rotary
Equipment: CME 55 Truck-Mounted Drill Rig
Hole Diameter: 5 in.Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.Note: See Legend for Explanation of SymbolsEnergy Ratio: Not Available

CORE RECOVERY, %

ROCK QUALITY DESIGNATION (RQD), %

BORING B-7B


Logged By: J. GordonDrilled by: Hard Core Drilling, Inc.Date Started: 9/14/10Coordinates: 43.35777778° N124.322222222° W (WGS 84)Drilling Method: Mud Rotary
Equipment: CME 55 Truck-Mounted Drill Rig
Hole Diameter: 5 in.Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.Note: See Legend for Explanation of SymbolsEnergy Ratio: Not Available

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-8

2020 JOB NO. 5128 FIG. 10A

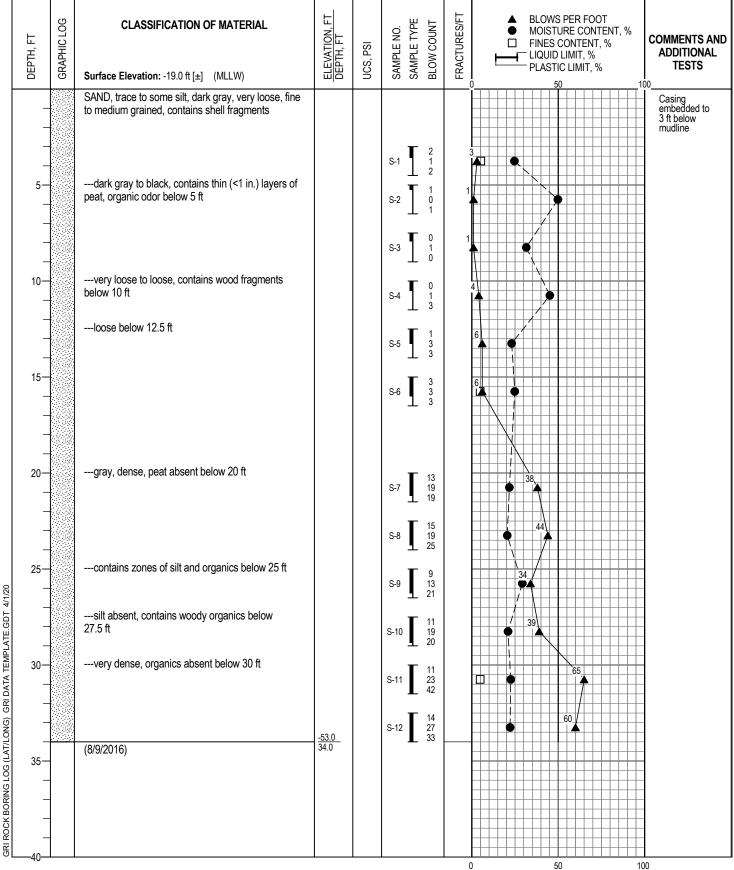
Logged By: J. Gordon Drilled by: Hard Core Drilling, Inc.

Date Started: 9/15/10 Coordinates: 43.35416667° N 124.33055556° W (WGS 84)

Drilling Method: Mud Rotary
Equipment: CME 55 Truck-Mounted Drill Rig
Hole Diameter: 5 in.

Note: See Legend for Explanation of Symbols

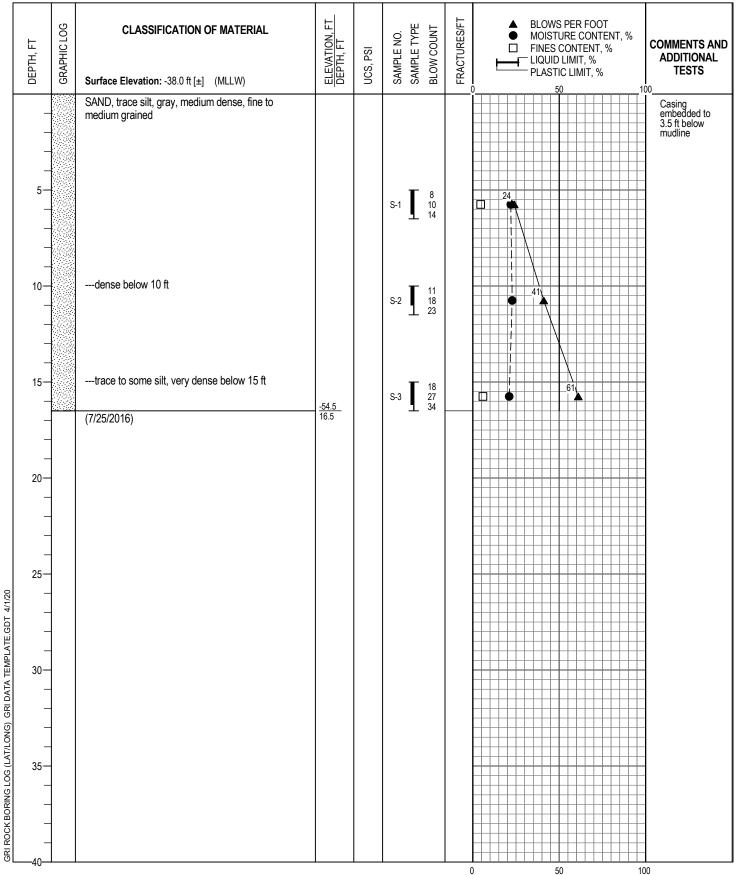
Drilling, Inc.
124.33055556° W (WGS 84)


Hammer Type: Auto Hammer Weight: 140 lb
Drop: 30 in.
Energy Ratio: Not Available

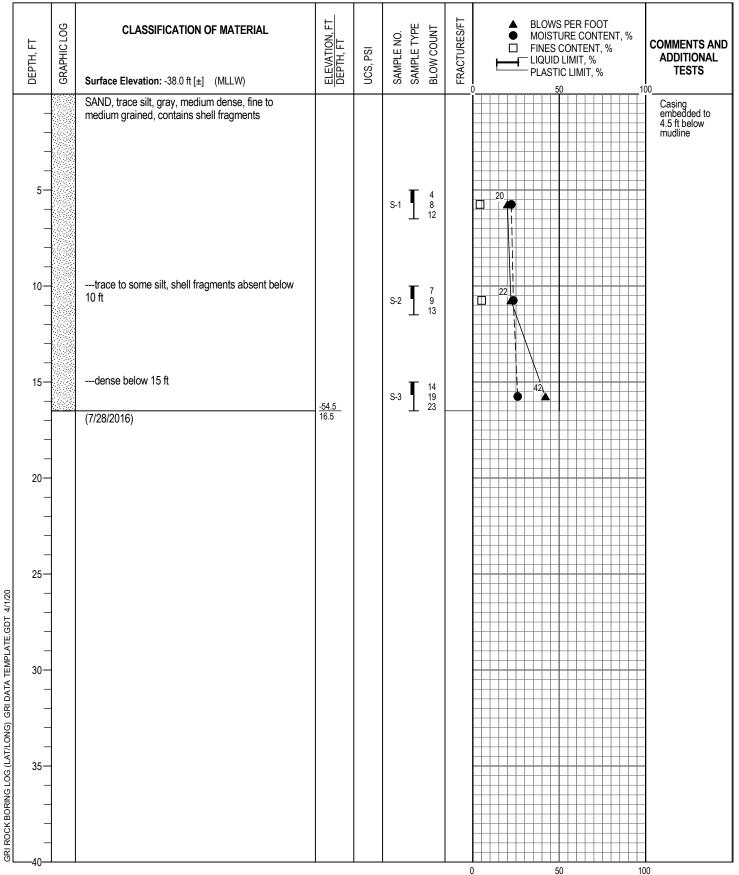
CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-9

2020 JOB NO. 5128 FIG. 11A

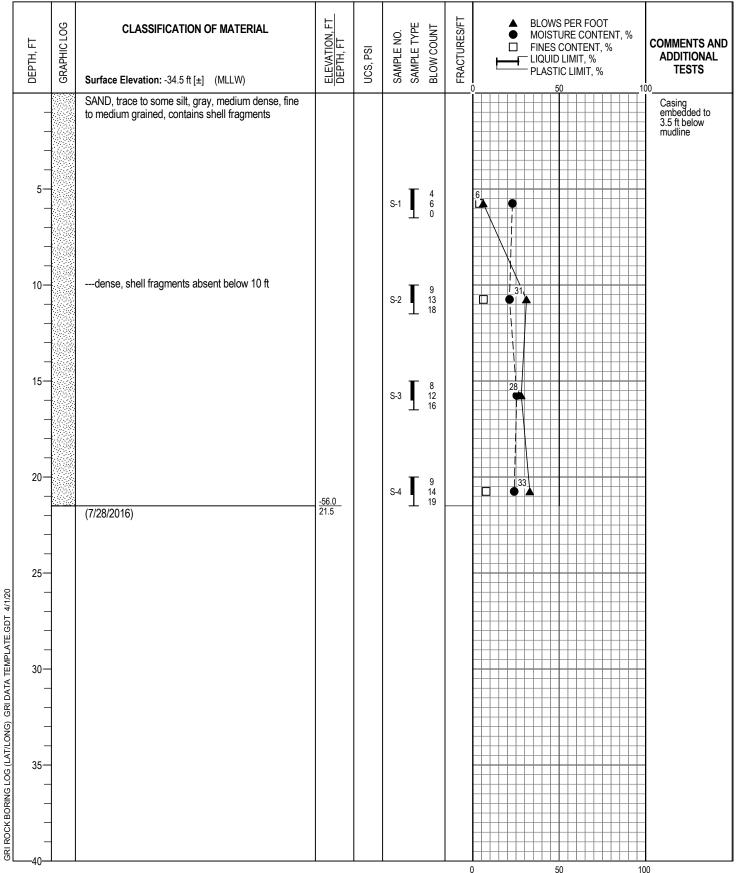


Logged By: S. Reddy	Drilled by: Hard Cor	re Drilling, Inc.
Date Started: 8/9/16	Coordinates:43.42128° N	124.26263° W (WGS84)
Drilling Method: Mud Rotary Equipment: CME 75 HT Truck-Mounted Drill Rig Hole Diameter: 5 in.		Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%


BORING B-10

2020 JOB NO. 5128 FIG. 12A

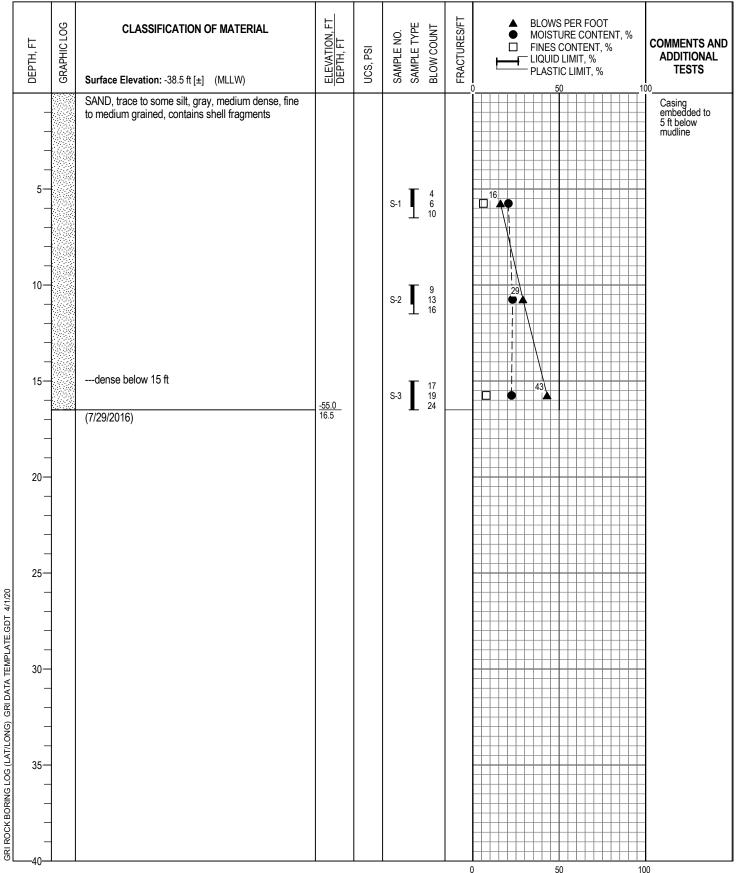
Logged By: S. Reddy	Drilled by: Hard Cor	e Drilling, Inc.
Date Started: 7/25/16	Coordinates:43.4165° N 1	24.27392° W (WGS84)
Drilling Method: Mud Rotary		Hammer Type: Auto Hammer
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.	Drop: 30 in.	
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%



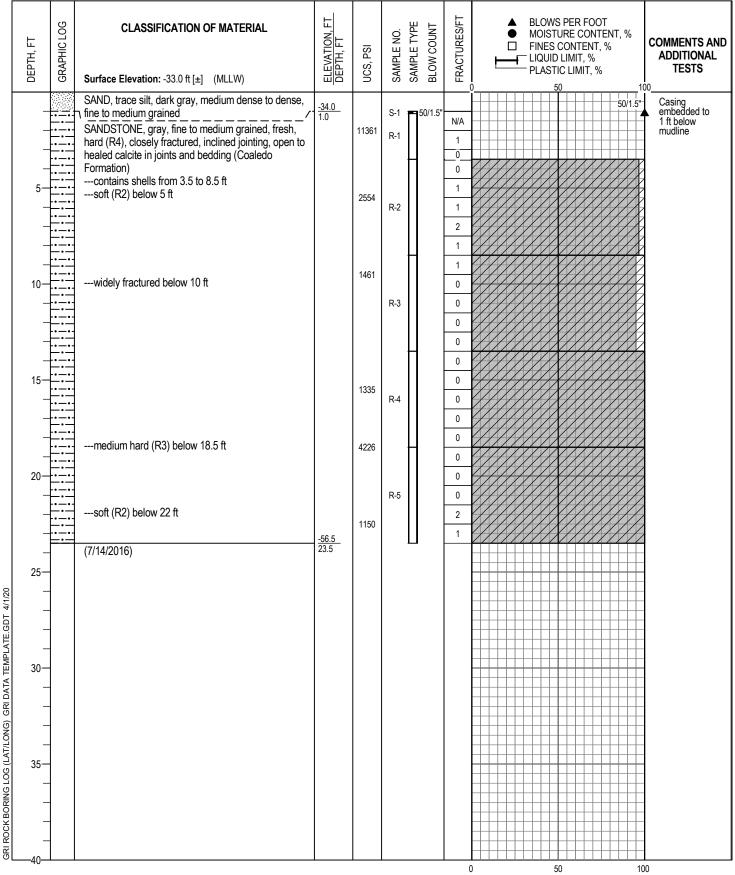
Logged By: S. Reddy	Drilled by: Hard Cor	re Drilling, Inc.
Date Started: 7/28/16	Coordinates:43.41436° N	124.27782° W (WGS84)
Drilling Method: Mud Rotary		Hammer Type: Auto Hammer
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.	Drop: 30 in.	
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

BORING B-12

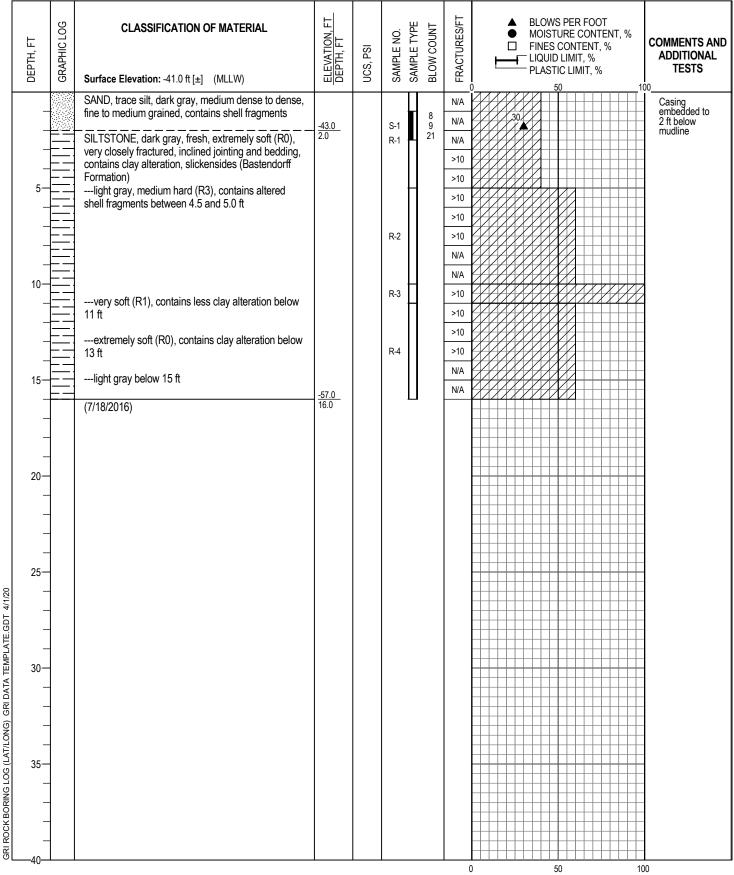
2020 JOB NO. 5128 FIG. 14A

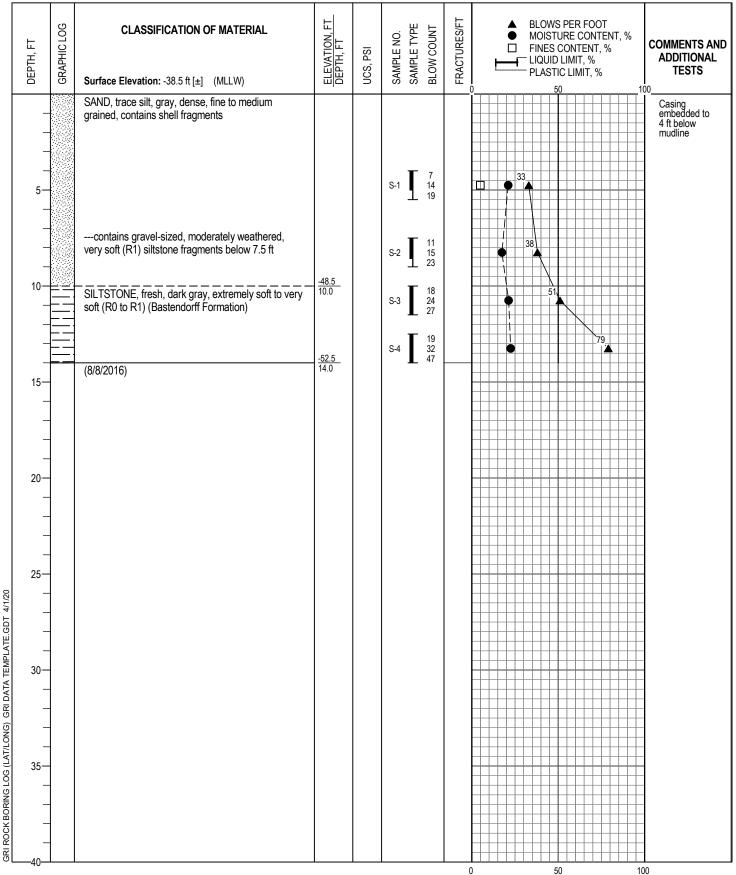


Logged By: S. Reddy	Drilled by: Hard Cor	e Drilling, Inc.
Date Started: 7/28/16	Coordinates:43.40825° N	124.27903° W (WGS84)
Drilling Method: Mud Rotary		Hammer Type: Auto Hammer
Equipment: CME 75 H	Weight: 140 lb	
Hole Diameter: 5 in.	Drop: 30 in.	
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

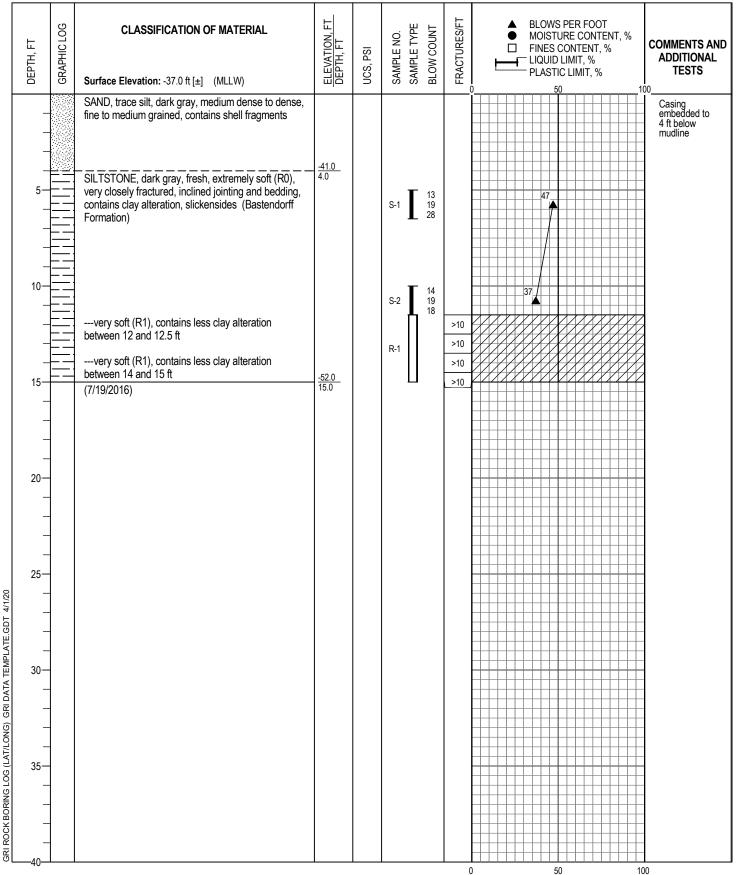

BORING B-13

2020 JOB NO. 5128 FIG. 15A


Logged By: S. Reddy	Drilled by: Hard Co	re Drilling, Inc.
Date Started: 7/29/16	Coordinates:43.40691° N	124.27789° W (WGS84)
Drilling Method: Mud Rotary		Hammer Type: Auto Hammer
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%


Logged By: S. Reddy	Drilled by: Hard Cor	e Drilling, Inc.
Date Started: 7/14/16	Coordinates:43.40395° N	124.28014° W (WGS84)
Drilling Method: Mud Rotary/HQ-3 Wireline Core		Hammer Type: Auto Hammer
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

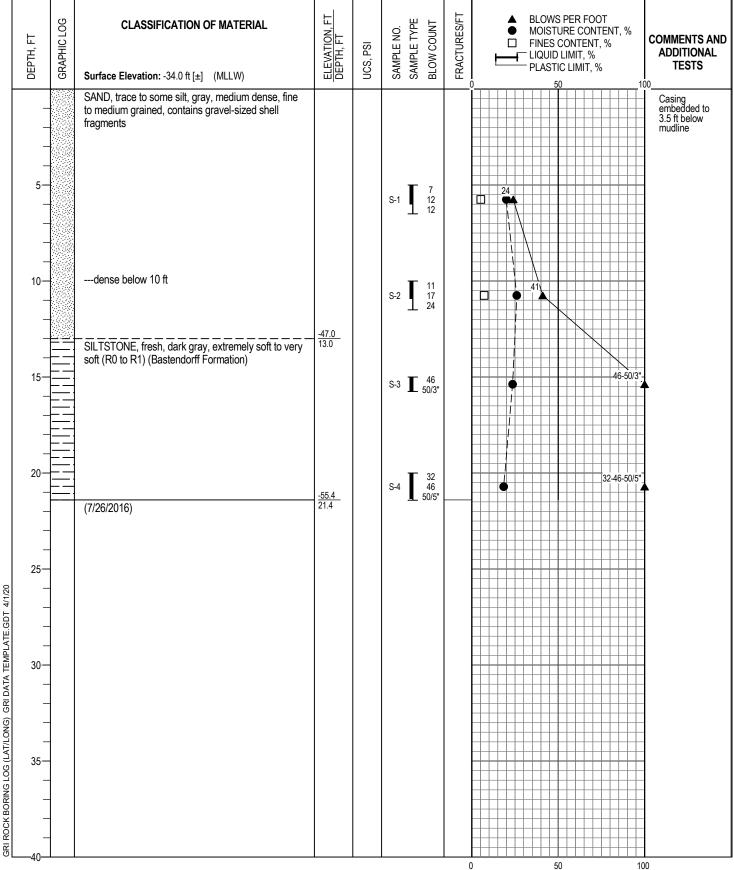
Logged By: S. Reddy Drilled by: Hard Core I		e Drilling, Inc.
Date Started: 7/18/16	Coordinates:43.40181° N	124.27928° W (WGS84)
Drilling Method: Mud Rotary/HQ-3 Wireline Core		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%


Logged By: S. Reddy Drilled by: Hard Con		e Drilling, Inc.	
Date Started: 8/8/16	Coordinates:43.39952° N	124.28258° W (WGS84)	
Drilling Method: Mud Rotary		Hammer Type: Auto Hammer	
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb	
Hole Diameter: 5 in.		Drop: 30 in.	
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%	

CORE RECOVERY, %
CORE RECOVERY, %
CORE RECOVERY, %

BORING B-17

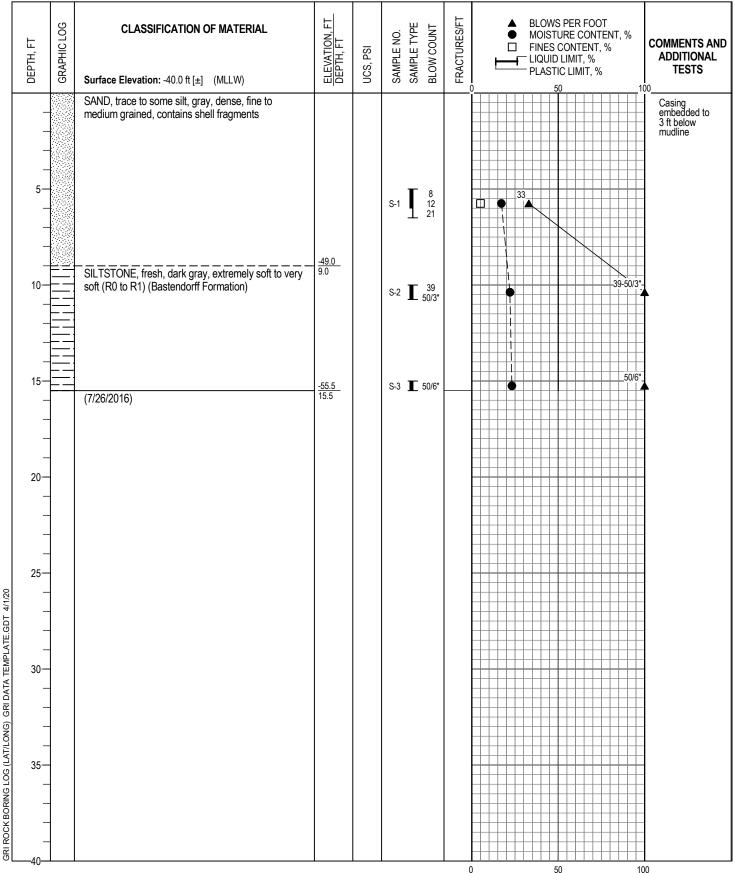
2020 JOB NO. 5128 FIG. 19A



Logged By: S. Reddy Drilled by: Hard Cor		re Drilling, Inc.
Date Started: 7/19/16	Coordinates:43.39577° N	124.28315° W (WGS84)
Drilling Method: Mud Rotary/HQ-3 Wireline Core		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

BORING B-18

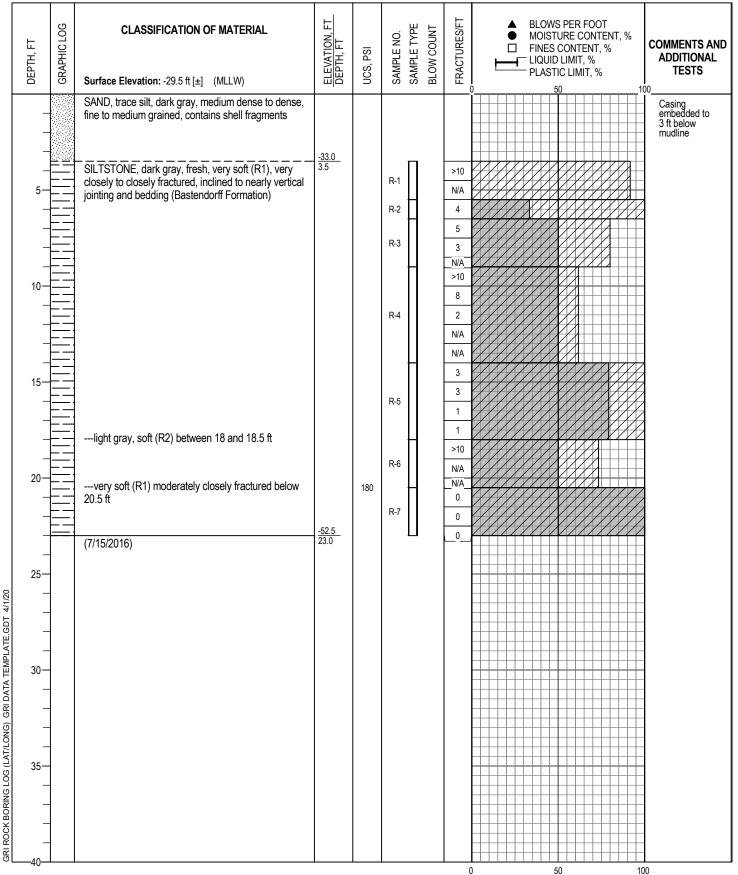
2020 JOB NO. 5128 FIG. 20A



Logged By: S. Reddy Drilled by: Hard Co		e Drilling, Inc.
Date Started: 7/26/16	Started: 7/26/16	
Drilling Method: Mud Rotary		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

BORING B-19

2020 JOB NO. 5128 FIG. 21A



Logged By: S. Reddy Drilled by: Hard Cor		re Drilling, Inc.
Date Started: 7/26/16	Coordinates:43.38995° N	124.28841° W (WGS84)
Drilling Method: Mud Rotary		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

BORING B-20

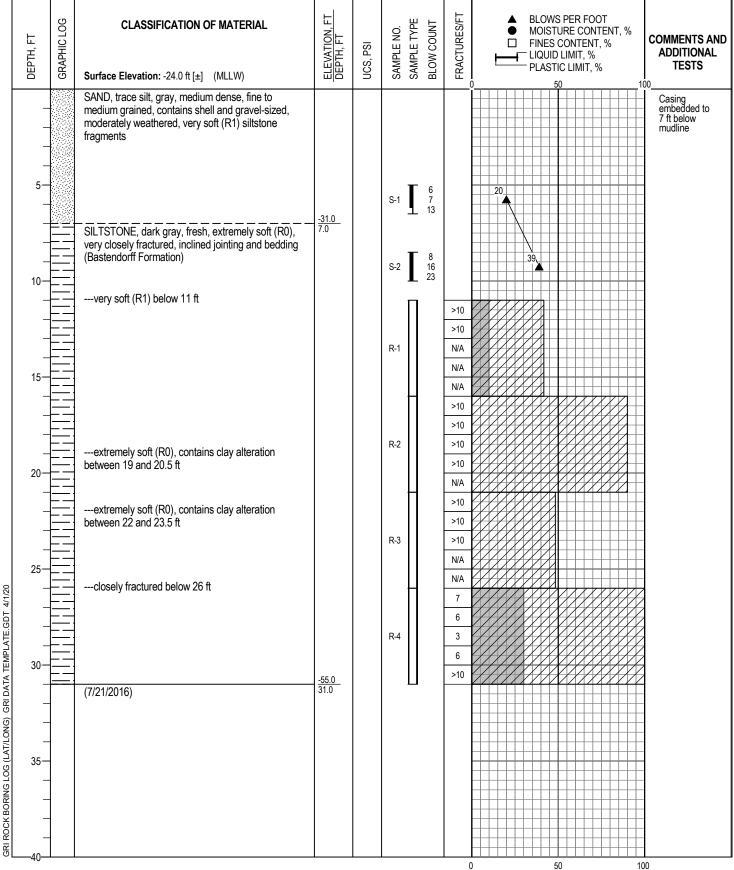
2020 JOB NO. 5128 FIG. 22A

Logged By: S. Reddy
Drilled by: Hard Core Drilling, Inc.

Date Started: 7/15/16
Coordinates: 43.38451° N
124.29271° W (WGS84)

Drilling Method: HQ-3 Wireline Core
Equipment: CME 75 HT Truck-Mounted Drill Rig
Hole Diameter: 4 in.

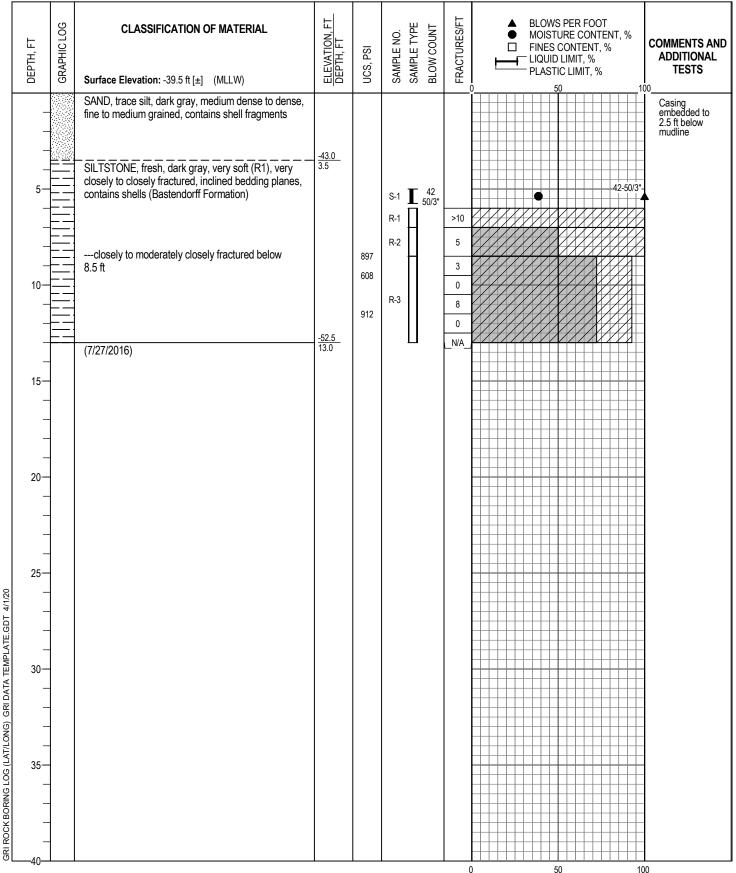
Note: See Legend for Explanation of Symbols


Drilling, Inc.
Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.
Energy Ratio: 85%

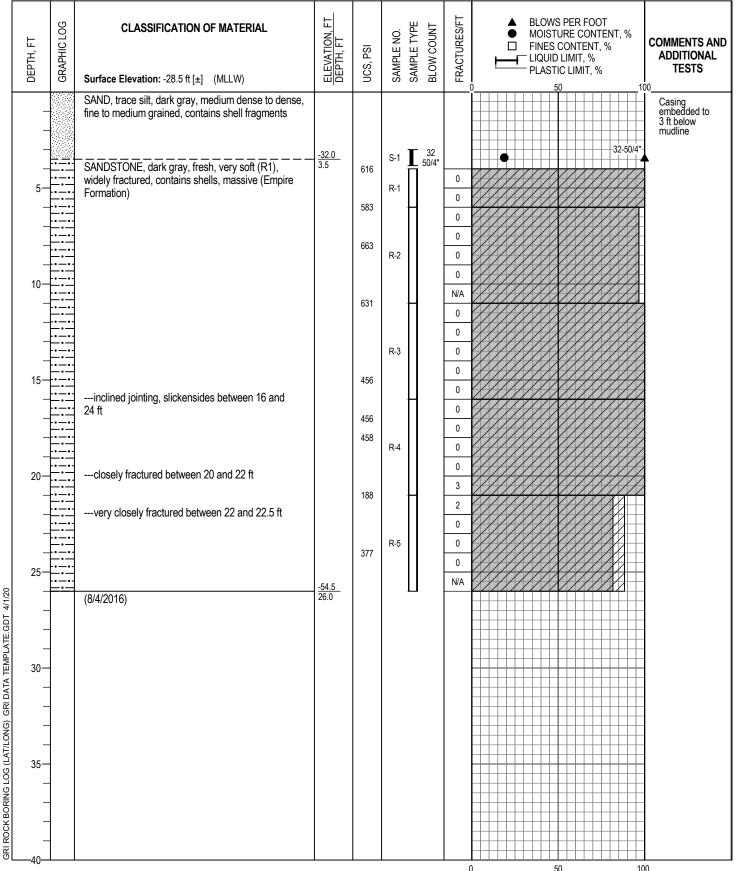
CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-21

2020 JOB NO. 5128 FIG. 23A

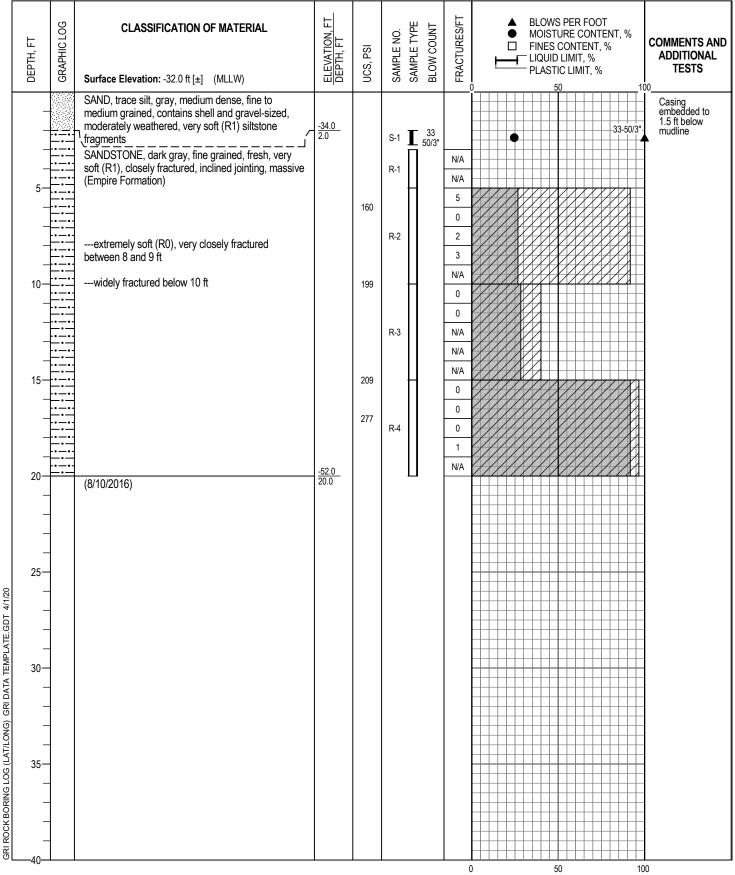


Logged By: S. Reddy Drilled by: Hard Co		re Drilling, Inc.
Date Started: 7/21/16	Coordinates:43.38323° N	124.29074° W (WGS84)
Drilling Method: Mud Rotary/HQ-3 Wireline Core		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

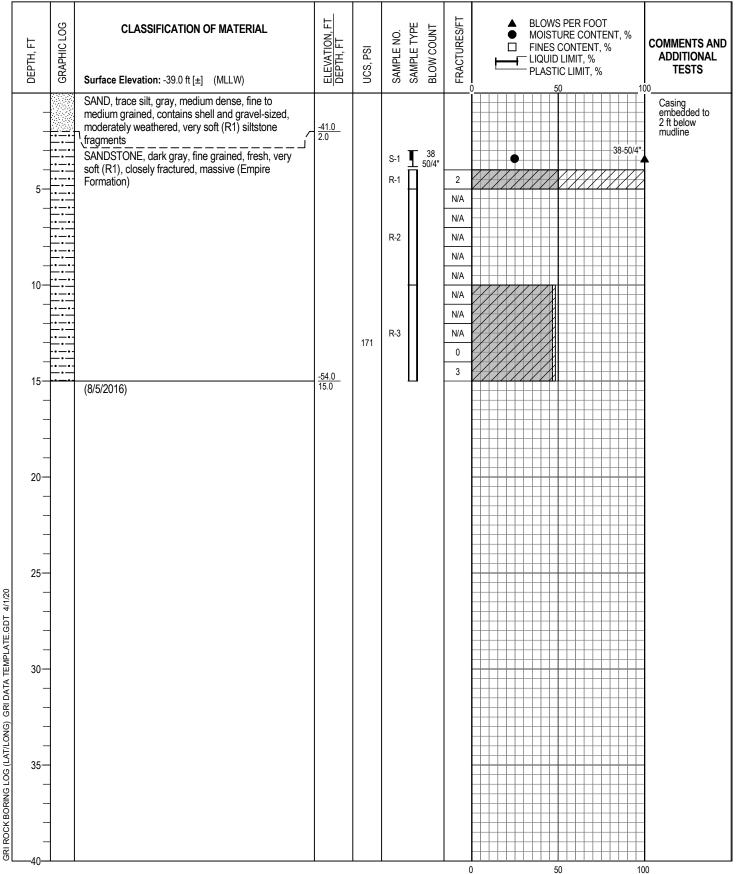

BORING B-22

2020 JOB NO. 5128 FIG. 24A

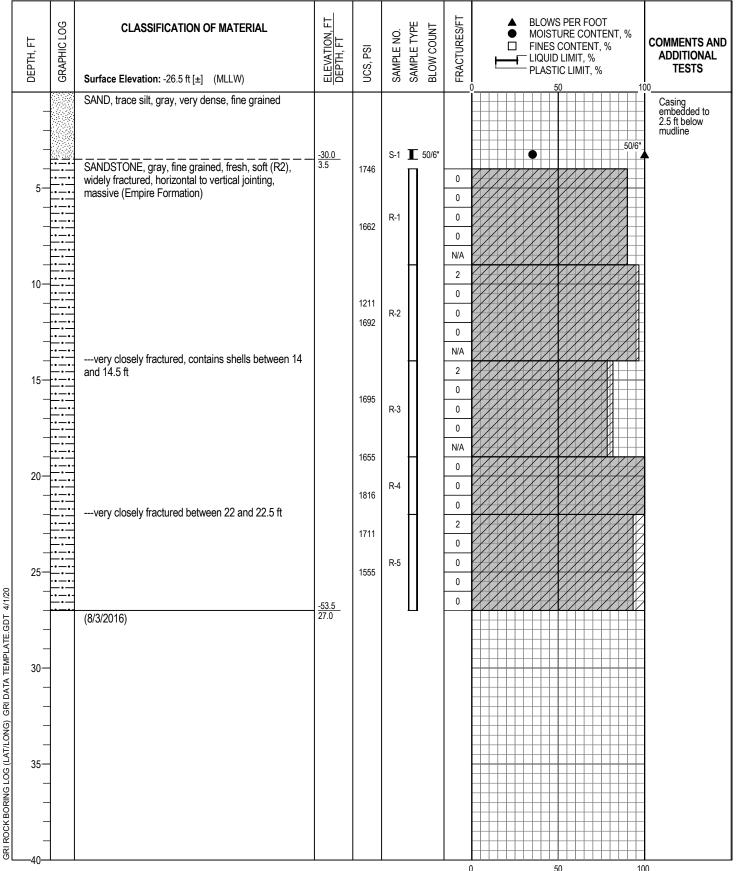
Logged By: S. Reddy Drilled by: Hard Cor		e Drilling, Inc.
Date Started: 7/27/16	Date Started: 7/27/16 Coordinates:43.37981° N	
Drilling Method: Mud Rotary / Hollow-Stem Auger		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%



Logged By: S. Reddy Drilled by: Hard Co.		re Drilling, Inc.
Date Started: 8/4/16	Date Started: 8/4/16 Coordinates: 43.37897° N	
Drilling Method: Mud Rotary/HQ-3 Wireline Core		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%


BORING B-24

2020 JOB NO. 5128 FIG. 26A


Logged By: K. Wolfe Drilled by: Hard Core Drilling, Inc.		Core Drilling, Inc.	
Date Started: 8/10/16	Date Started: 8/10/16 Coordinates: 43.3768° N		
Drilling Method: Mud Rota	Hammer Type: Auto Hammer		
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb	
Hole Diameter: 4 in.		Drop: 30 in.	
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%	

Logged By: S. Reddy Drilled by: Hard Cor		Core Drilling, Inc.
Date Started: 8/5/16 Coordinates:43.3745° N		124.30254° W (WGS84)
Drilling Method: Mud Rota	Hammer Type: Auto Hammer	
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%

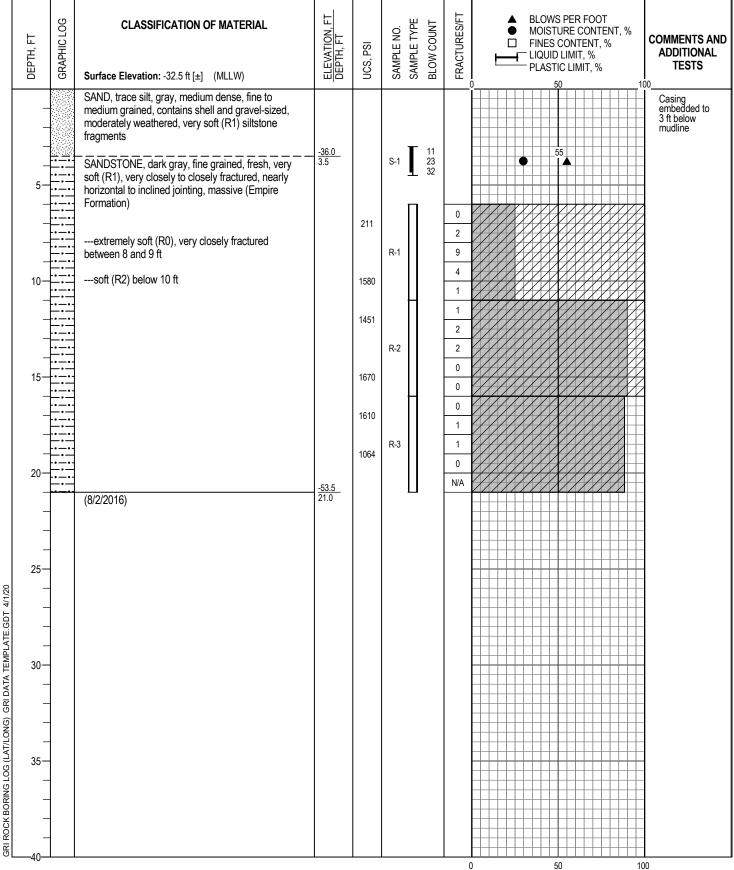
Logged By: S. Reddy
Drilled by: Hard Core Drilling, Inc.

Date Started: 8/3/16
Coordinates: 43.37134° N
124.30852° W (WGS84)

Drilling Method: Mud Rotary/HQ-3 Wireline Core
Equipment: CME 75 HT Truck-Mounted Drill Rig
Hole Diameter: 4 in.

Note: See Legend for Explanation of Symbols

Drilling, Inc.


| 124.30852° W (WGS84)
| 124.30852° W (WGS8

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

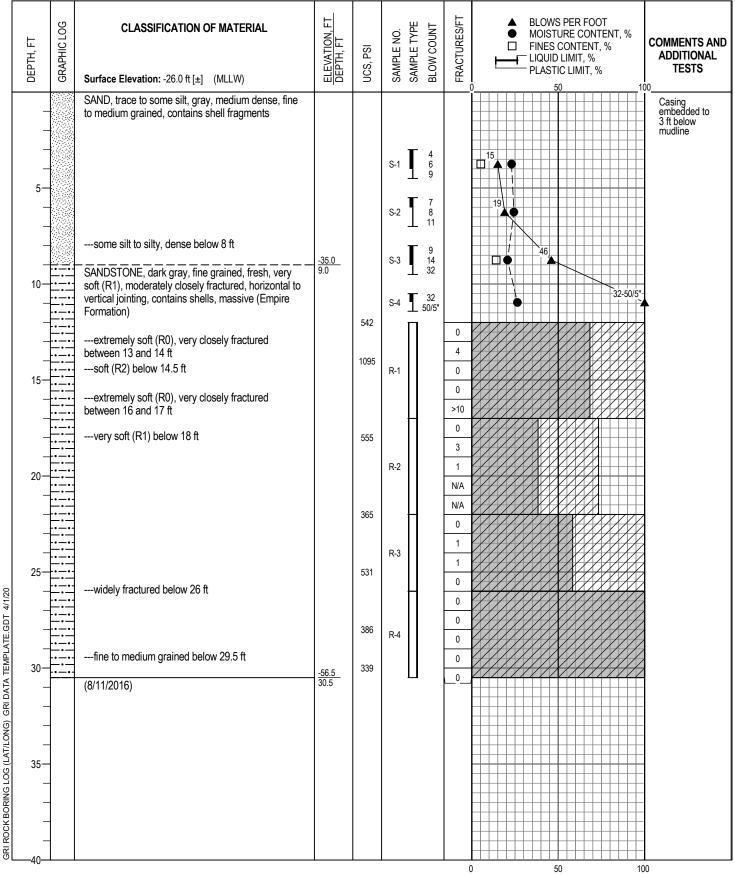
BORING B-27

2020 JOB NO. 5128 FIG. 29A

Logged By: S. Reddy Drilled by: Hard Cor		e Drilling, Inc.	
Date Started: 8/2/16	Coordinates:43.36903° N	124.31154° W (WGS84)	
Drilling Method: Mud Rotary/HQ-3 Wireline Core		Hammer Type: Auto Hammer	
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb	
Hole Diameter: 4 in.		Drop: 30 in.	
Note: See Legend for Explanation of Symbols		Energy Ratio: 85%	

BORING B-28

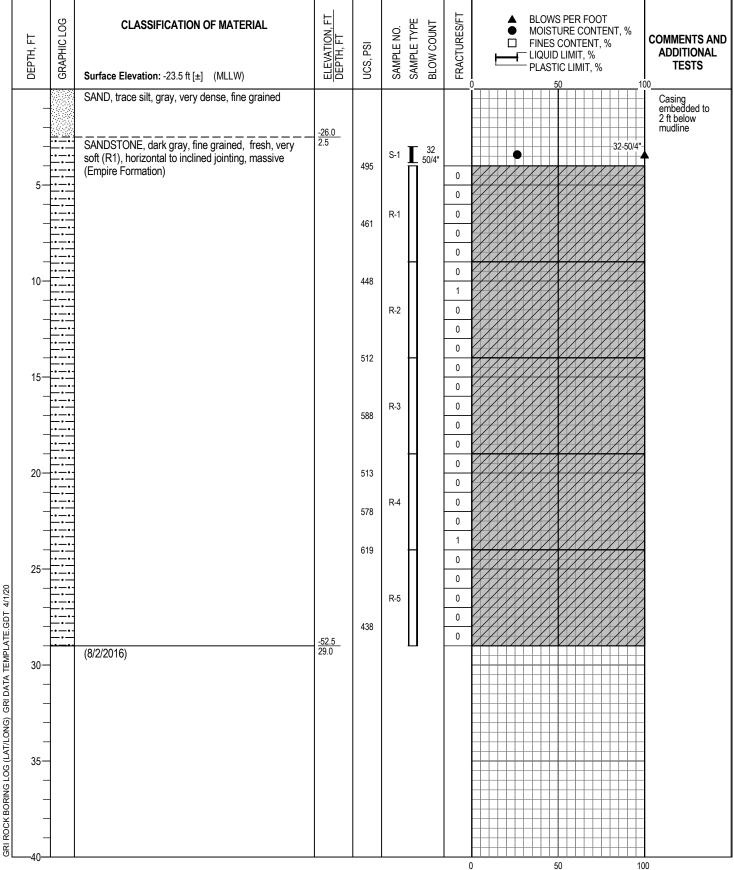
2020 JOB NO. 5128 FIG. 30A


DEPTH, FT	CLASSIFICATION OF MATERIAL Surface Elevation: -38.0 ft [±] (MLLW)	ELEVATION, FT DEPTH, FT	UCS, PSI	SAMPLE NO.	SAMPLE 17PE BLOW COUNT	FRACTURES/FT	BLOWS PER FOOT MOISTURE CONTENT, % FINES CONTENT, % LIQUID LIMIT, % PLASTIC LIMIT, % 50 10	COMMENTS AND ADDITIONAL TESTS
5-1	SAND, trace silt, gray, medium dense, fine to medium grained, contains shell and gravel-sized, moderately weathered, very soft (R1) siltstone fragments SANDSTONE, dark gray, fine grained, fresh, soft (R2), very closely to closely fractured, horizontal to inclined jointing, massive (Empire Formation) contains shells below 7.5 ft	-39.0 1.0	1512	R-1 R-2 R-3	14 19 34	N/A >10 5 3 N/A 2 3 2 1 N/A 6 1 4 1 N/A 1 N/A	53	Casing embedded to 1 ft below mudline
GRI ROCK BORING LOG (LAT/LONG) GRI DATA TEMPLATE.GDT 4/1/20 OP	(7/20/2016)	-53.0 15.0			J	NA	50 50 10	00

Logged By: S. Reddy	Drilled by: Hard Core Drilling, Inc.	
Date Started: 7/20/16	Coordinates:43.36793° N	124.31127° W (WGS84)
Drilling Method: Mud Rot		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Expla	anation of Symbols	Energy Ratio: 85%

BORING B-29

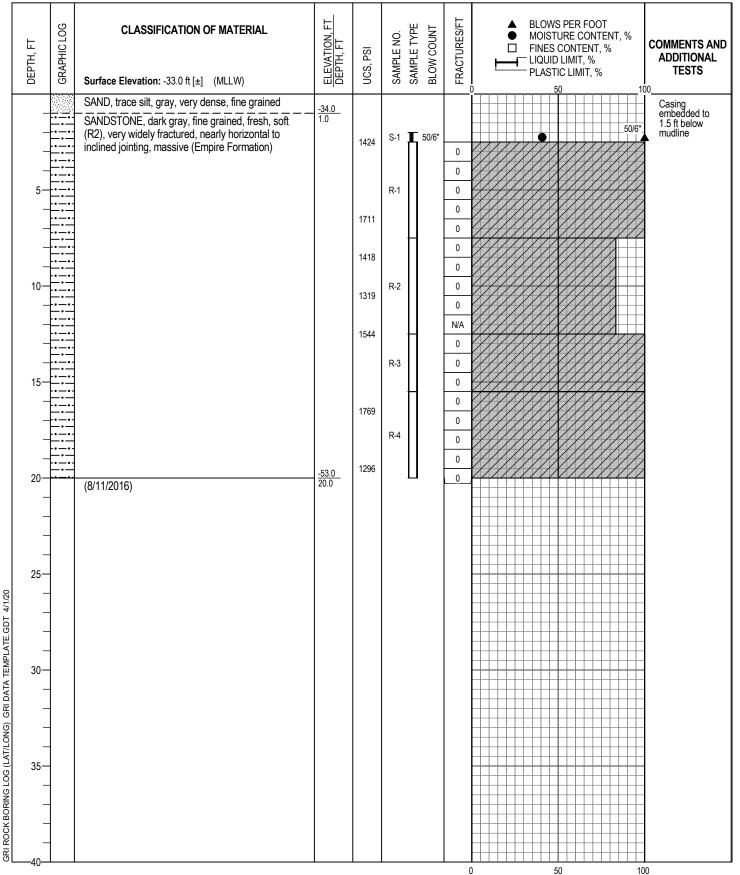
2020 JOB NO. 5128 FIG. 31A



Logged By: K. Wolfe	Drilled by: Hard Co	re Drilling, Inc.
Date Started: 8/11/16	Coordinates:43.36592° N	124.31625° W (WGS84)
Drilling Method: Mud Rot		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Expla	anation of Symbols	Energy Ratio: 85%

BORING B-30

2020 JOB NO. 5128 FIG. 32A



Logged By: S. Reddy	Drilled by: Hard Core Drilling, Inc.	
Date Started: 8/2/16	Coordinates:43.36265° N	124.31654° W (WGS84)
Drilling Method: Mud Rot		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Expla	anation of Symbols	Energy Ratio: 85%

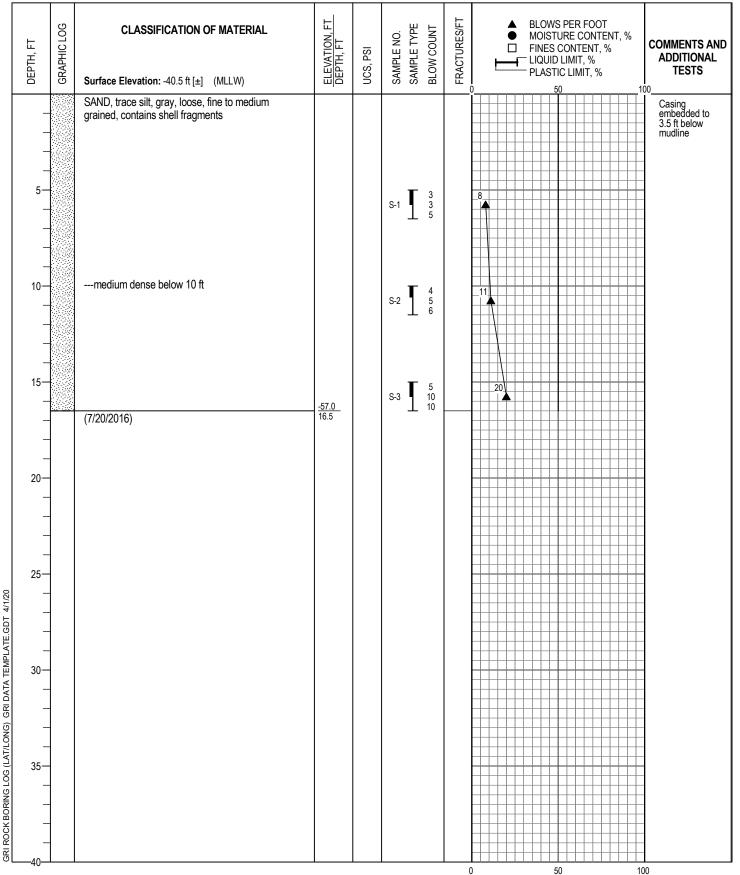
BORING B-31

2020 JOB NO. 5128 FIG. 33A

Logged By: K. Wolfe	Drilled by: Hard Co	re Drilling, Inc.
Date Started: 8/11/16	Coordinates:43.36052° N	124.31973° W (WGS84)
Drilling Method: Mud Rot		Hammer Type: Auto Hammer
Equipment: CME 75 HT Truck-Mounted Drill Rig		Weight: 140 lb
Hole Diameter: 4 in.		Drop: 30 in.
Note: See Legend for Expla	anation of Symbols	Energy Ratio: 85%

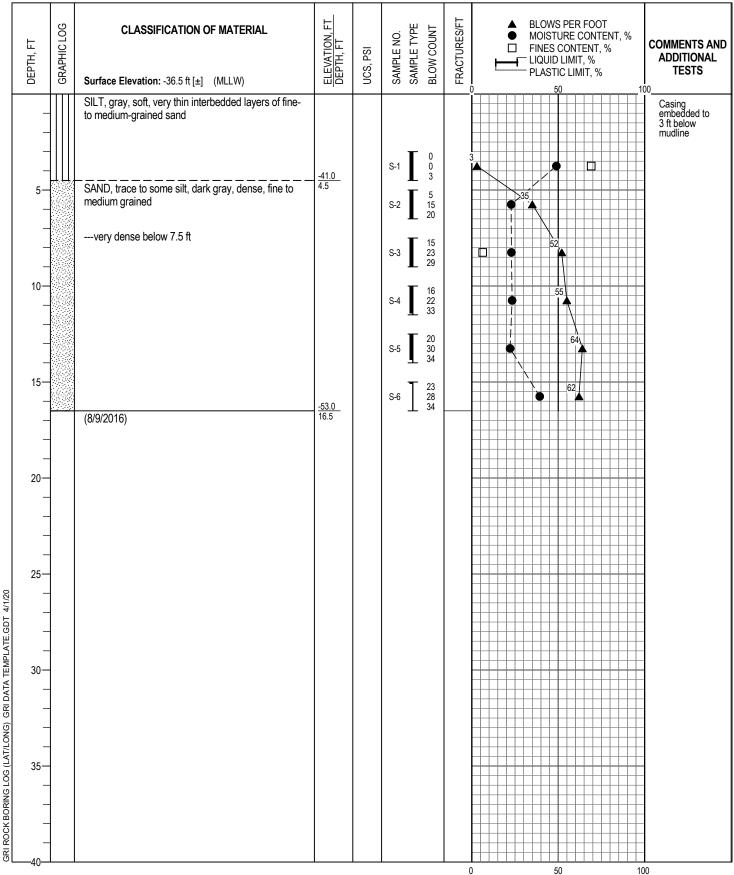
BORING B-32

2020 JOB NO. 5128 FIG. 34A

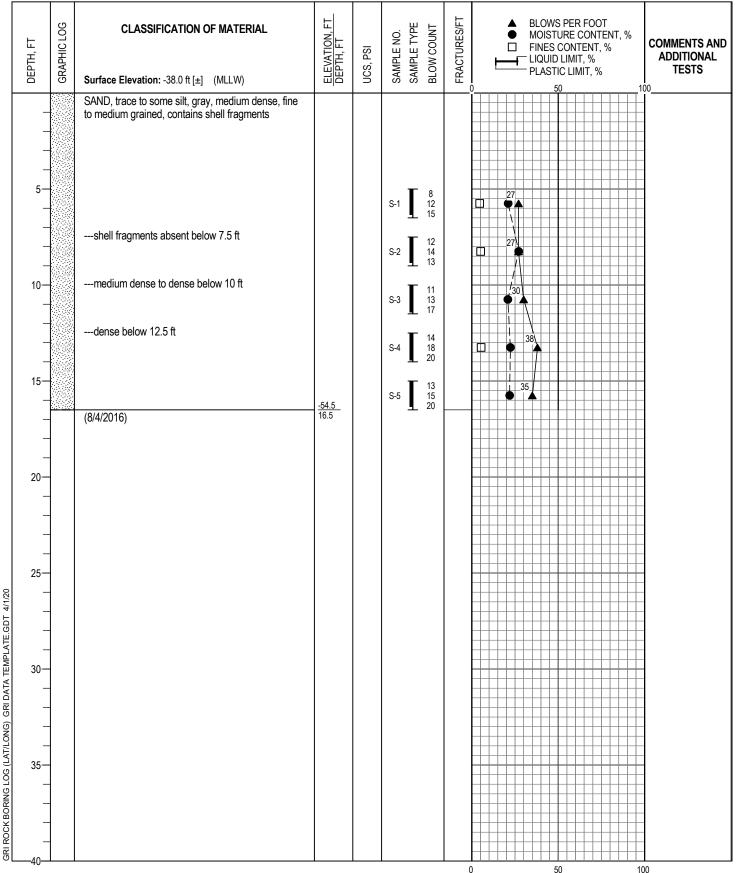

SAND, trace silt, brown, very dense, fine to medium grained, contains shell fragments SANDSTONE, dark gray, fine grained, fresh, soft (R2), widely fractured, horizontal to inclined jointing, massive (Empire Formation) 1729 R2 1723 R3 1724 R4 1725 R5 1726 R5 1726 R6 1726 R7 1726 R7 1727 R8 1728 R8 1729 R8	ОЕРТН, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: -21.5 ft [±] (MLLW)	ELEVATION, FT DEPTH, FT	UCS, PSI	SAMPLE NO.	SAMPLE TYPE	BLOW COUNT	FRACTURES/FT	BLOWS PER FOOT MOISTURE CONTENT, % FINES CONTENT, % LIQUID LIMIT, % PLASTIC LIMIT, %	COMMENTS AND ADDITIONAL TESTS
	A7/LONG) GRI DATA TEMPLATE.GDT 4/1/20 20 21 20 25 27 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20		SAND, trace silt, brown, very dense, fine to medium grained, contains shell fragments SANDSTONE, dark gray, fine grained, fresh, soft (R2), widely fractured, horizontal to inclined jointing, massive (Empire Formation)	<u>-22.5</u> 1.0	1681 1729 1723 1576	S-1 R-1 R-2 R-3 R-4 R-5 R-6		_8	N/A N/A N/A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)	TESTS Casing embedded to 1 ft below

Logged By: S. Reddy	Drilled by: Hard Cor	re Drilling, Inc.
Date Started: 7/22/16	Coordinates:43.35849° N	124.31929° W (WGS84)
Drilling Method: Mud Rot	Hammer Type: Auto Hammer	
Equipment: CME 75	HT Truck-Mounted Drill Rig	Weight: 140 lb
Hole Diameter: 4 in.	Drop: 30 in.	
Note: See Legend for Expla	anation of Symbols	Energy Ratio: 85%

BORING B-33

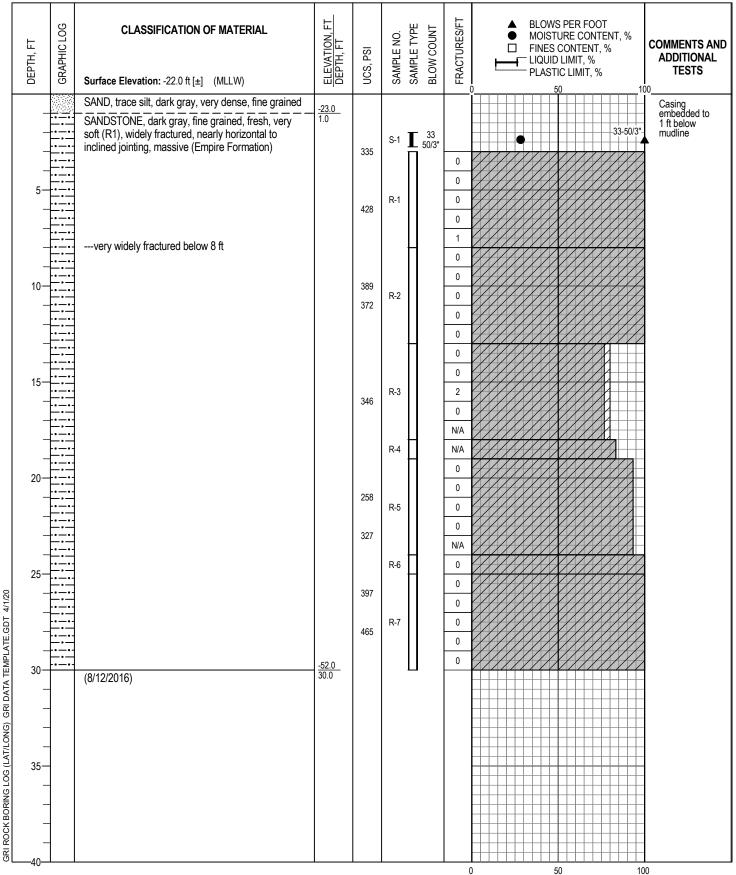

2020 JOB NO. 5128 FIG. 35A

Logged By: S. Reddy	Drilled by: Hard Co	Drilled by: Hard Core Drilling, Inc.	
Date Started: 7/20/16	Coordinates:43.35382° N	124.32176° W (WGS84)	
Drilling Method: Mud Rota		Hammer Type: Auto Hammer	
Equipment: CME 75 I	HT Truck-Mounted Drill Rig	Weight: 140 lb	
Hole Diameter: 4 in.	ŭ	Drop: 30 in.	
Note: See Legend for Expla	nation of Symbols	Energy Ratio: 85%	


BORING B-34

Logged By: S. Reddy	re Drilling, Inc.	
Date Started: 8/9/16	Coordinates:43.42183° N	124.26525° W (WGS84)
Drilling Method: Mud Rot	Hammer Type: Auto Hammer	
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.	_	Drop: 30 in.
Note: See Legend for Expla	Energy Ratio: 85%	

BORING B-37



Logged By: S. Reddy	Drilled by: Hard Cor	re Drilling, Inc.
Date Started: 8/4/16	Coordinates:43.41162° N	124.27669° W (WGS84)
Drilling Method: Mud Rota	Hammer Type: Auto Hammer	
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.	Drop: 30 in.	
Note: See Legend for Expla	Energy Ratio: 85%	

BORING B-38

2020 JOB NO. 5128 FIG. 38A

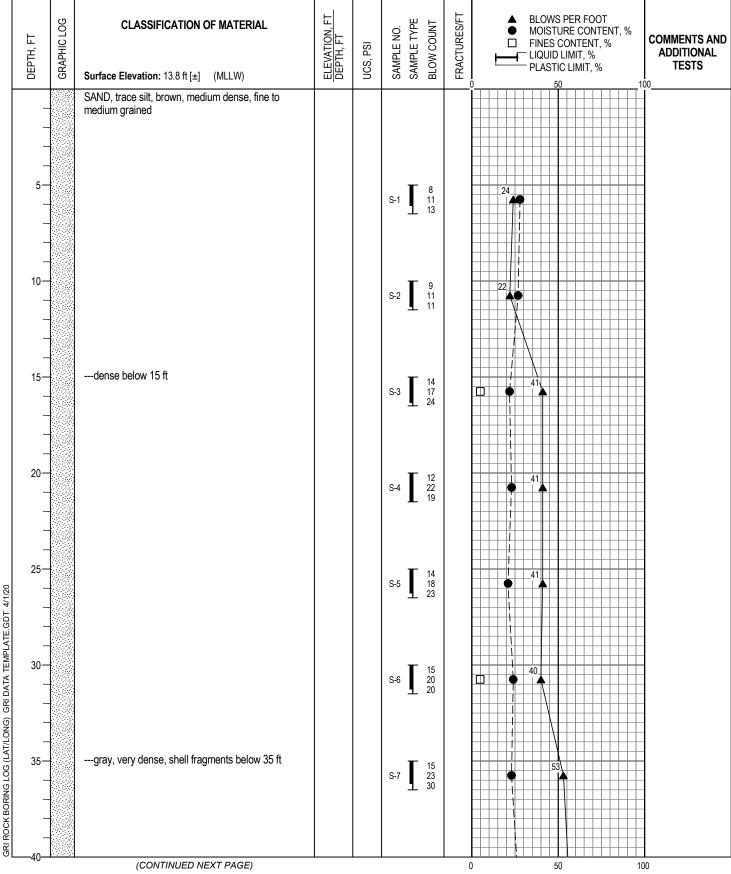
Logged By: K. Wolfe
Drilled by: Hard Core Drilling, Inc.

Date Started: 8/12/16
Coordinates: 43.36041° N
124.3176° W (WGS84)

Drilling Method: Mud Rotary/HQ-3 Wireline Core
Equipment: CME 75 HT Truck-Mounted Drill Rig
Hole Diameter: 4 in.

Note: See Legend for Explanation of Symbols

Drilling, Inc.


Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.
Energy Ratio: 85%

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %

BORING B-40

2020 JOB NO. 5128 FIG. 39A

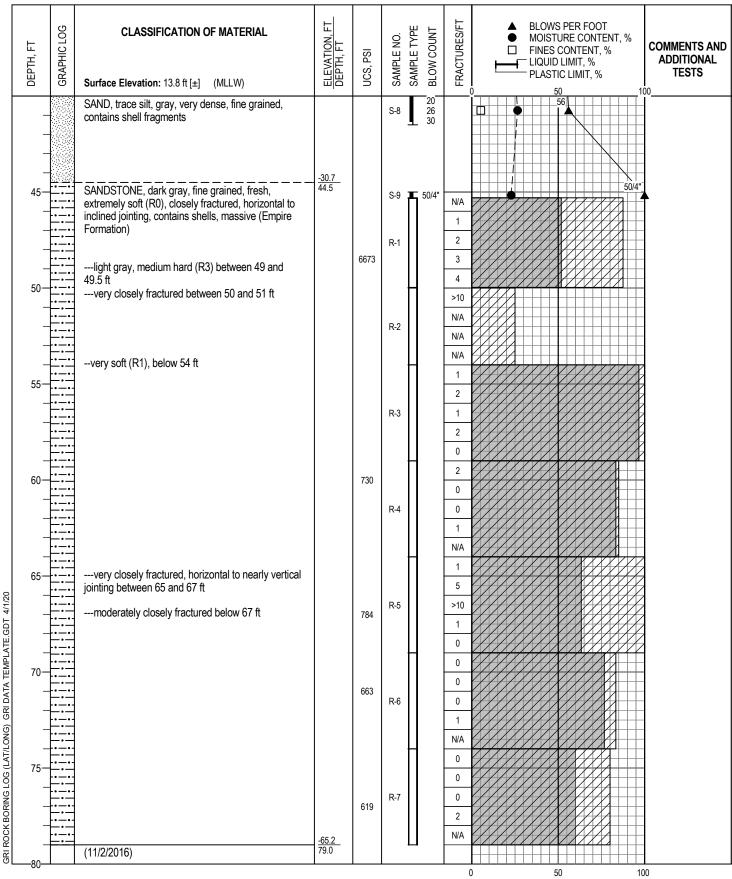
Logged By: S. Reddy
Drilled by: Hard Core Drilling, Inc.

Date Started: 11/1/16
Coordinates: 43.351482° N
124.342956° W (WGS84)

Drilling Method: Mud Rotary/HQ-3 Wireline Core
Equipment: CME 850 Track-Mounted Drill Rig
Hole Diameter: 5 in.

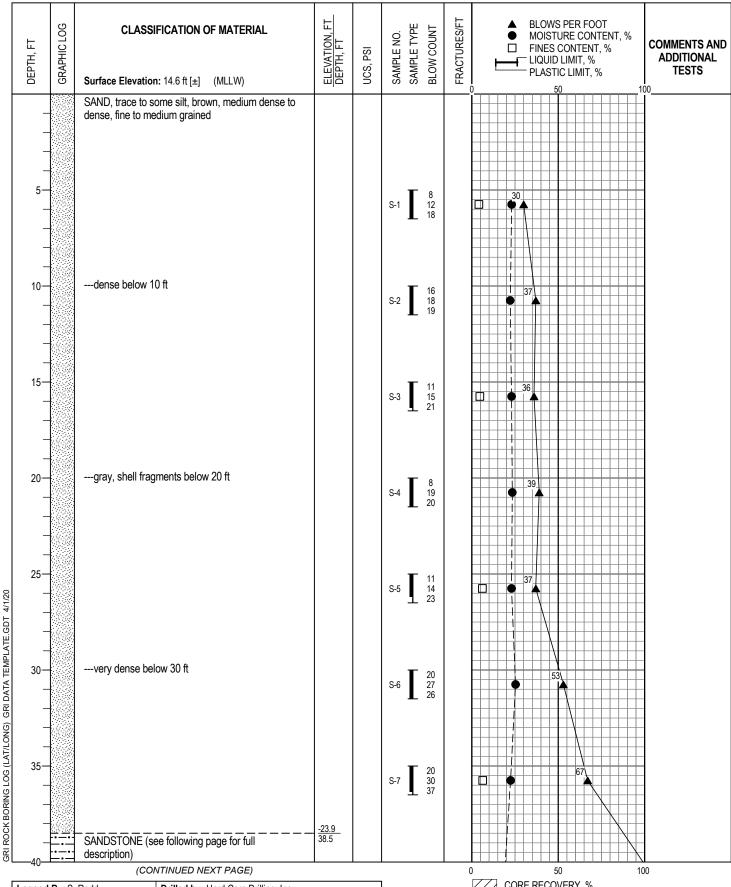
Note: See Legend for Explanation of Symbols

Drilling, Inc.


124.342956° W (WGS84)

Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.
Energy Ratio: 91%

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %


BORING UB-1

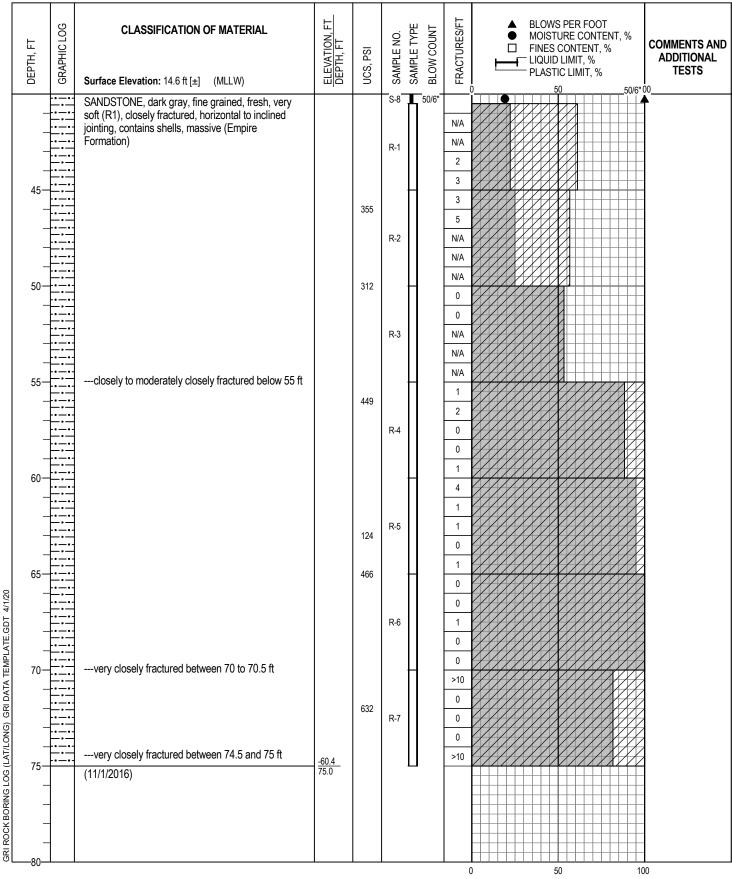
BORING UB-1

2020 JOB NO. 5128 FIG. 40A

Logged By: S. Reddy
Drilled by: Hard Core Drilling, Inc.

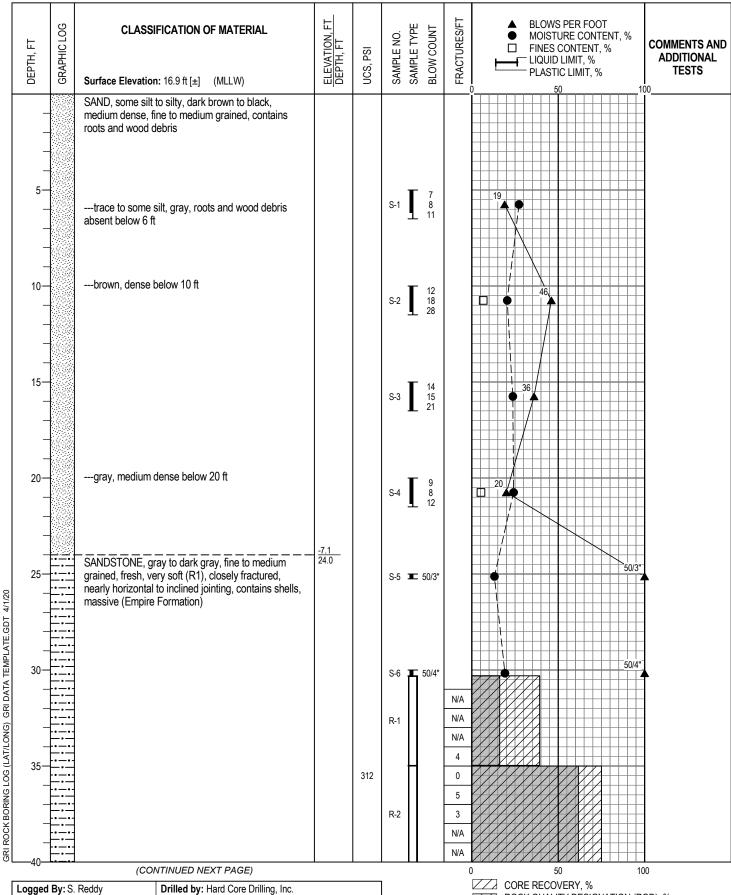
Date Started: 10/31/16
Coordinates: 43.350847° N
Drilling Method: Mud Rotary/HQ-3 Wireline Core
Equipment: CME 850 Track-Mounted Drill Rig
Hole Diameter: 5 in.

Note: See Legend for Explanation of Symbols


Drilling, Inc.

124.34162° W (WGS84)
Hammer Type: Auto Hammer
Weight: 140 lb
Drop: 30 in.
Energy Ratio: 91%

CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %



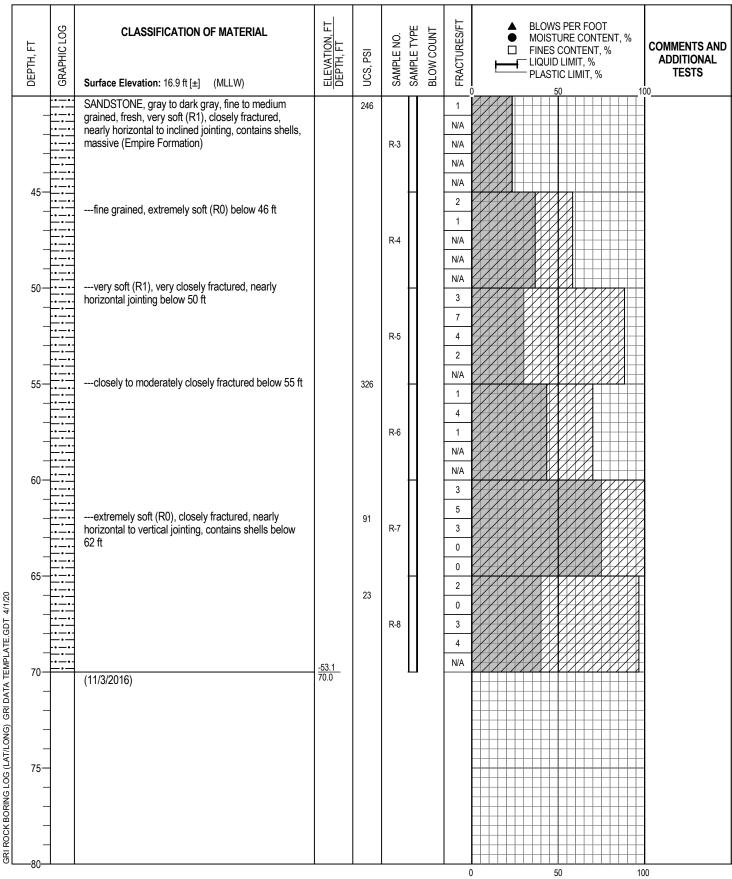
BORING UB-2

BORING UB-2

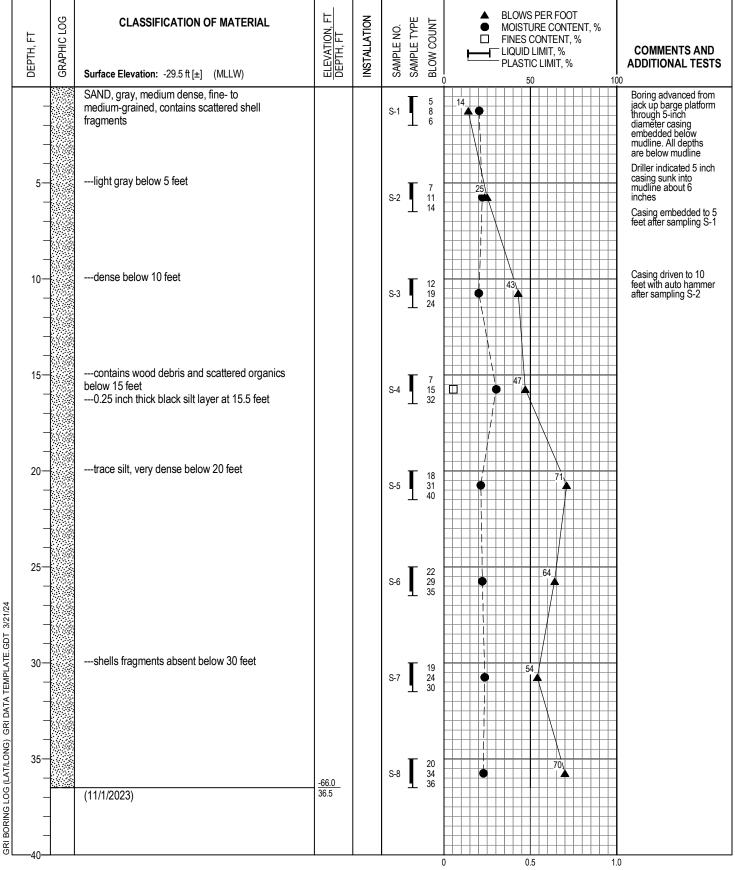
 Logged By: S. Reddy
 Drilled by: Hard Core Drilling, Inc.

 Date Started: 11/3/16
 Coordinates: 43.350055° N
 124.340027° W (WGS84)

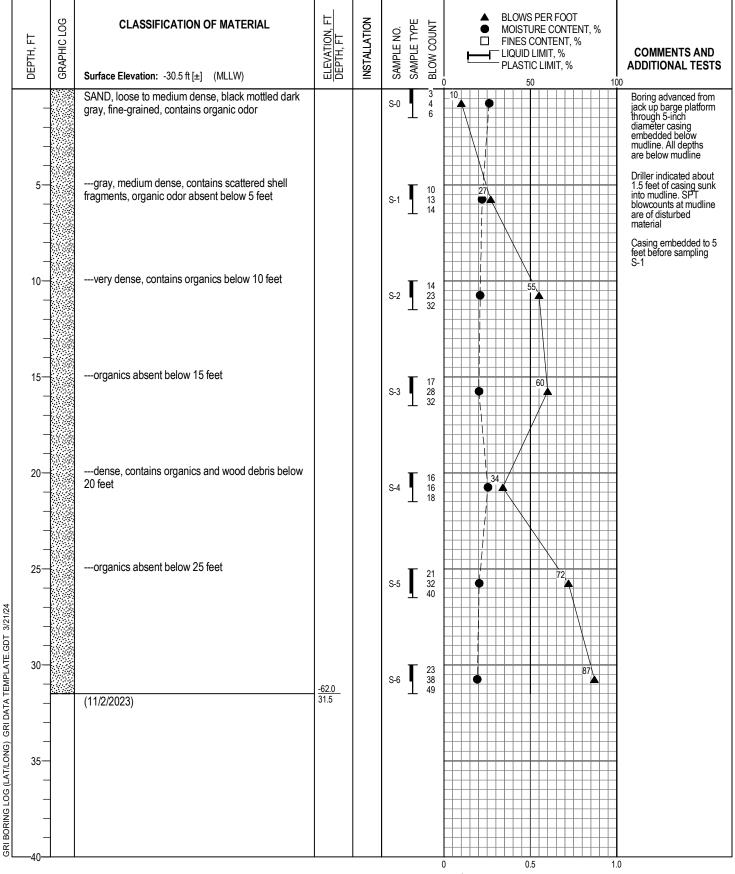
 Drilling Method: Mud Rotary/HQ-3 Wireline Core Equipment: CME 850 Track-Mounted Drill Rig Hole Diameter: 5 in.
 Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.


 Note: See Legend for Explanation of Symbols
 Energy Ratio: 91%

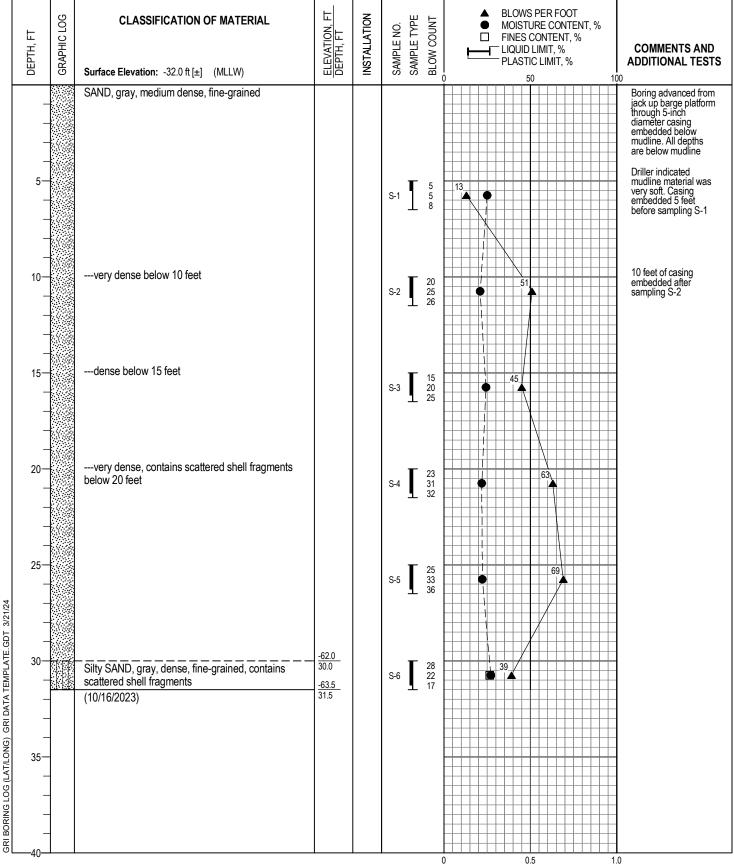
CORE RECOVERY, %
ROCK QUALITY DESIGNATION (RQD), %


BORING UB-3

2020 JOB NO. 5128 FIG. 42A



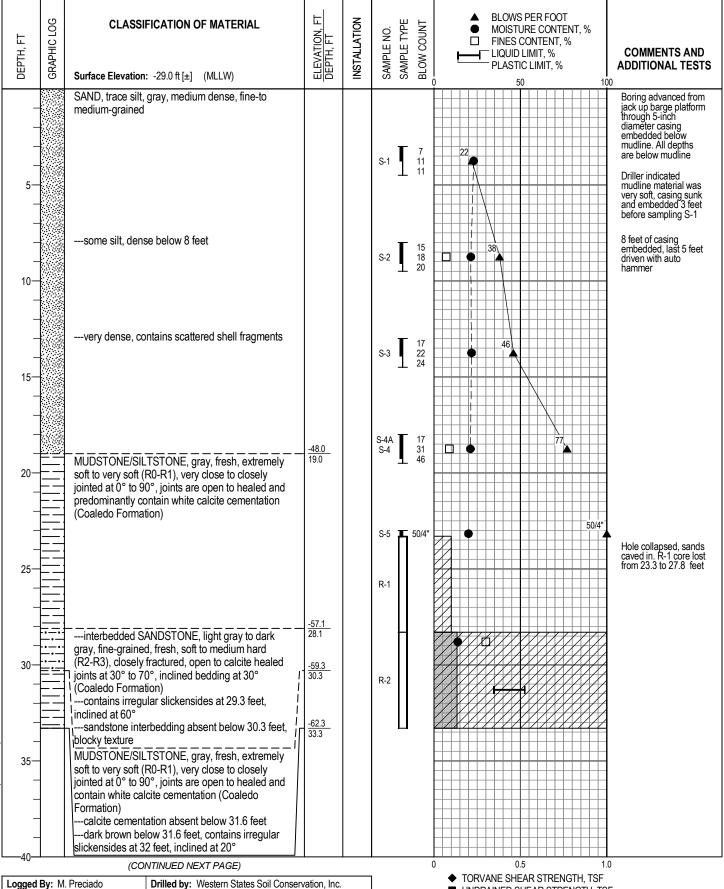
BORING UB-3


Logged By: M. Preciado	Drilled by: Western	States Soil Conservation, Inc.
Date Started: 11/1/23	Coordinates: 43.422949° N	124.2554° W (WGS84)
	ary Truck-Mounted Drill Rig	Hammer Type: Auto Hammer Weight: 140 lb
Hole Diameter: 5 in.	Drop: 30 in.	
Note: See Legend for Expla	nation of Symbols	Energy Ratio: 0.8

- ◆ TORVANE SHEAR STRENGTH, TSF■ UNDRAINED SHEAR STRENGTH, TSF
- GRI BORING B-1-23

Logged By: M. Preciado	Drilled by: Western	States Soil Conservation, Inc.
Date Started: 11/2/23	Coordinates: 43.422744° N	124.268509° W (WGS84)
Drilling Method: Mud Rot Equipment: CME 75 Hole Diameter: 5 in.	Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.	
Note: See Legend for Expla	nation of Symbols	Energy Ratio: 0.8

- ◆ TORVANE SHEAR STRENGTH, TSF■ UNDRAINED SHEAR STRENGTH, TSF
- GRI BORING B-2-23



Logged By: M. Preciado	Drilled by: Western	States Soil Conservation, Inc.
Date Started: 10/16/23	Coordinates: 43.405104° N	124.279921° W (WGS84)
Drilling Method: Mud Rota	ary	Hammer Type: Auto Hammer
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Expla	Energy Ratio: 0.8	

- TORVANE SHEAR STRENGTH, TSFUNDRAINED SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, IS

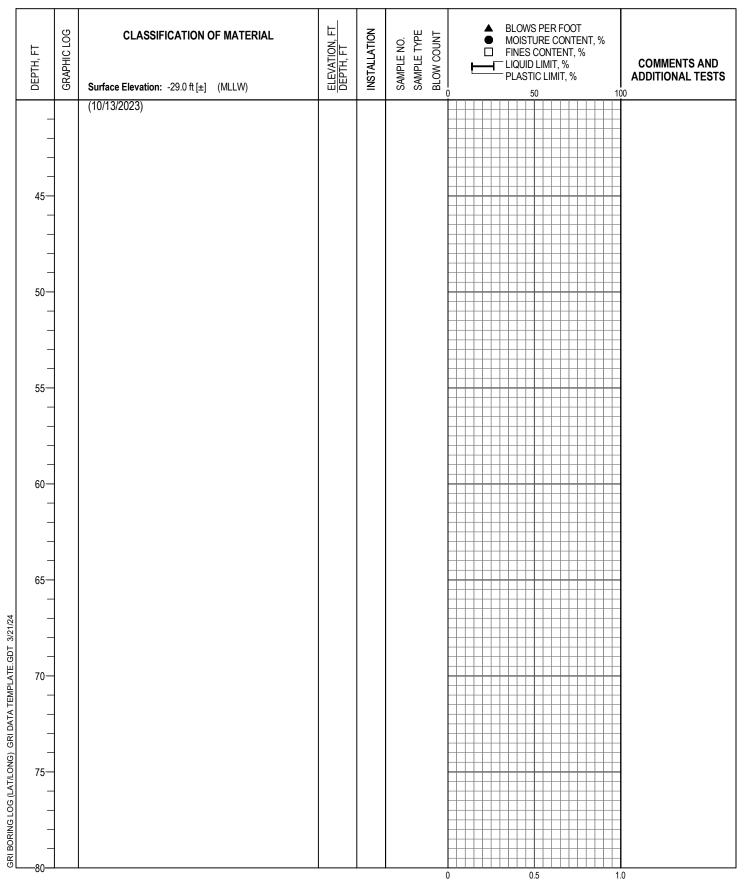
2023 JOB NO. 5128 FIG. 45A

 Logged By: M. Preciado
 Drilled by: Western States Soil Conservation, Inc.

 Date Started: 10/13/23
 Coordinates: 43.404186° N
 124.2809° W (WGS84)

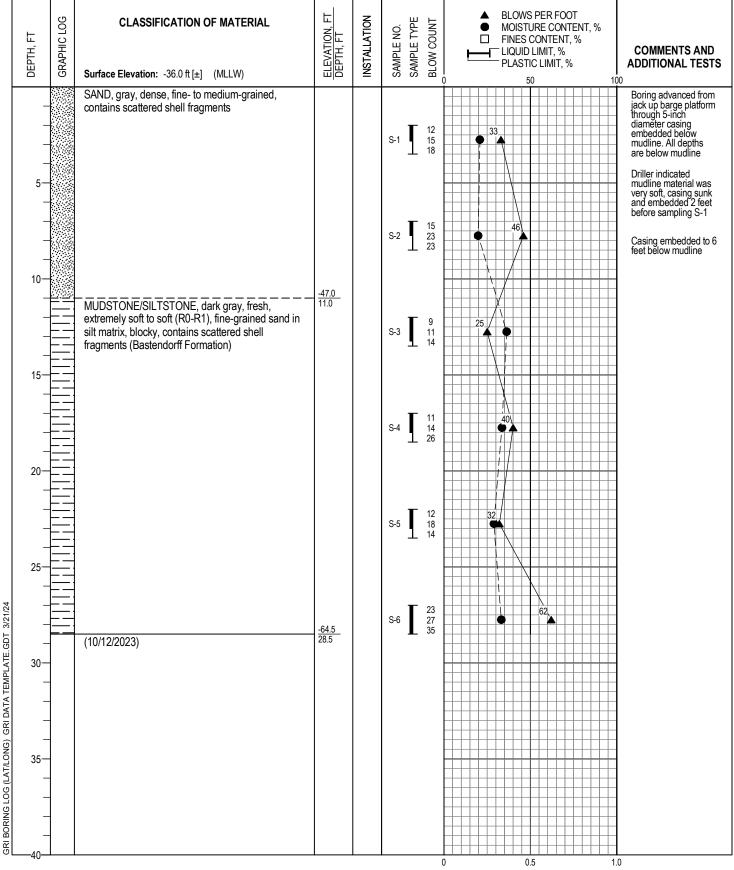
 Drilling Method: Mud Rotary Equipment: CME 75 Truck-Mounted Drill Rig Hole Diameter: 5 in.
 Hammer Type: Auto Hammer Weight: 140 lb

 Hole Diameter: 5 in.
 Drop: 30 in.


 Note: See Legend for Explanation of Symbols

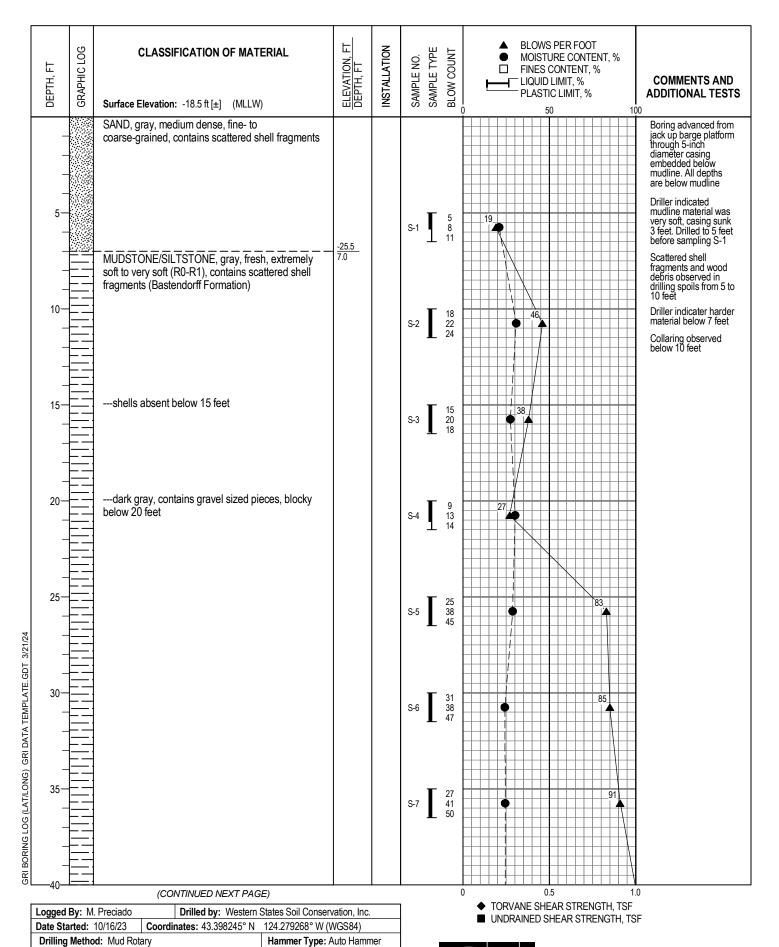
GRI BORING LOG (LAT/LONG) GRI DATA TEMPLATE.GDT 3/21/24

■ UNDRAINED SHEAR STRENGTH, TSF


2023 JOB NO. 5128 FIG. 46A

- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

2023 JOB NO. 5128 FIG. 46A



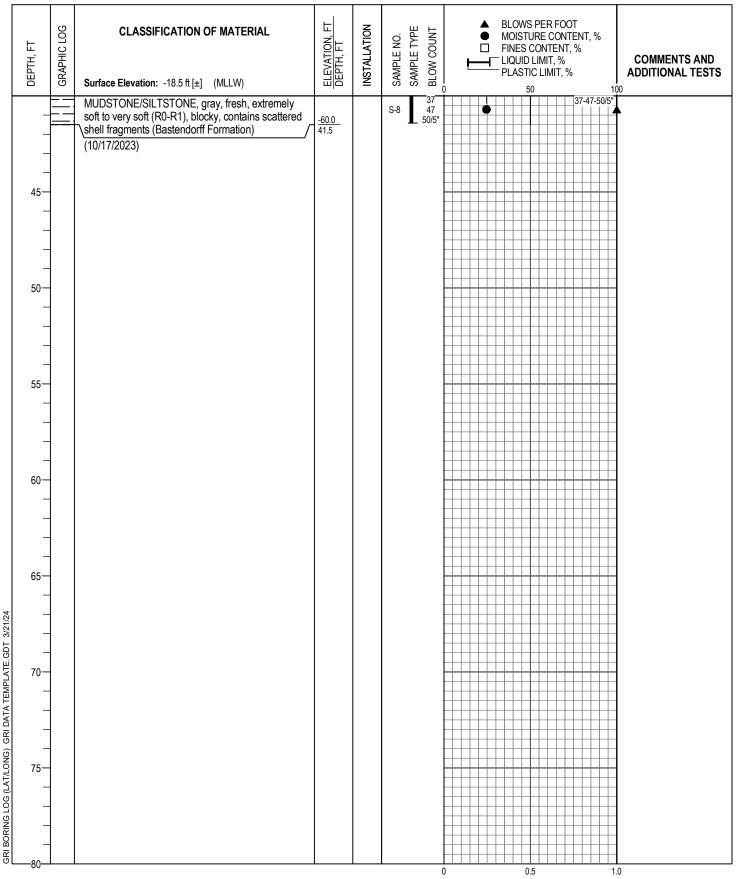
Logged By: M. Preciado	States Soil Conservation, Inc.	
Date Started: 10/12/23	Coordinates: 43.402718° N	124.280715° W (WGS84)
Drilling Method: Mud Rota	Hammer Type: Auto Hammer	
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.	Drop: 30 in.	
Note: See Legend for Expla	Energy Ratio: 0.8	

- TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

2023 JOB NO. 5128 FIG. 47A

Weight: 140 lb

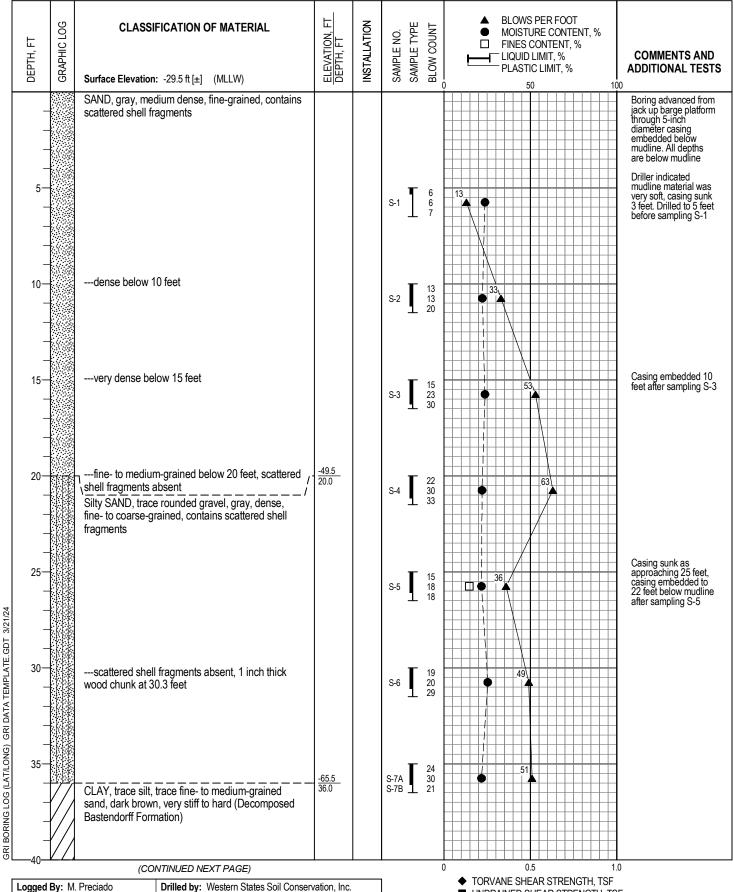
Energy Ratio: 0.8


Drop: 30 in.

Equipment: CME 75 Truck-Mounted Drill Rig

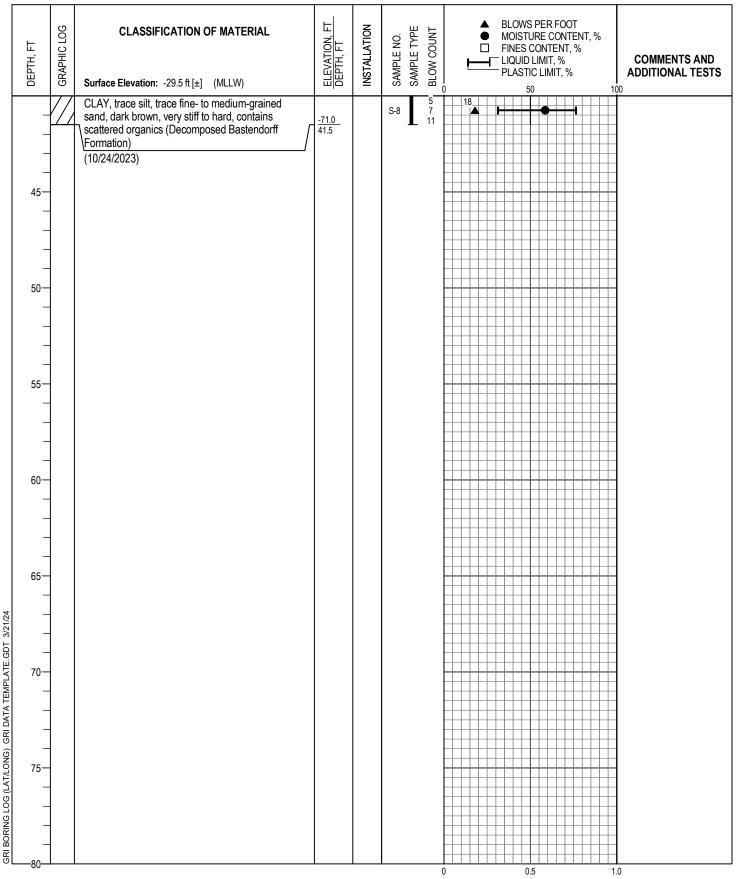
Note: See Legend for Explanation of Symbols

Hole Diameter: 5 in.


GRI BORING B-6-23

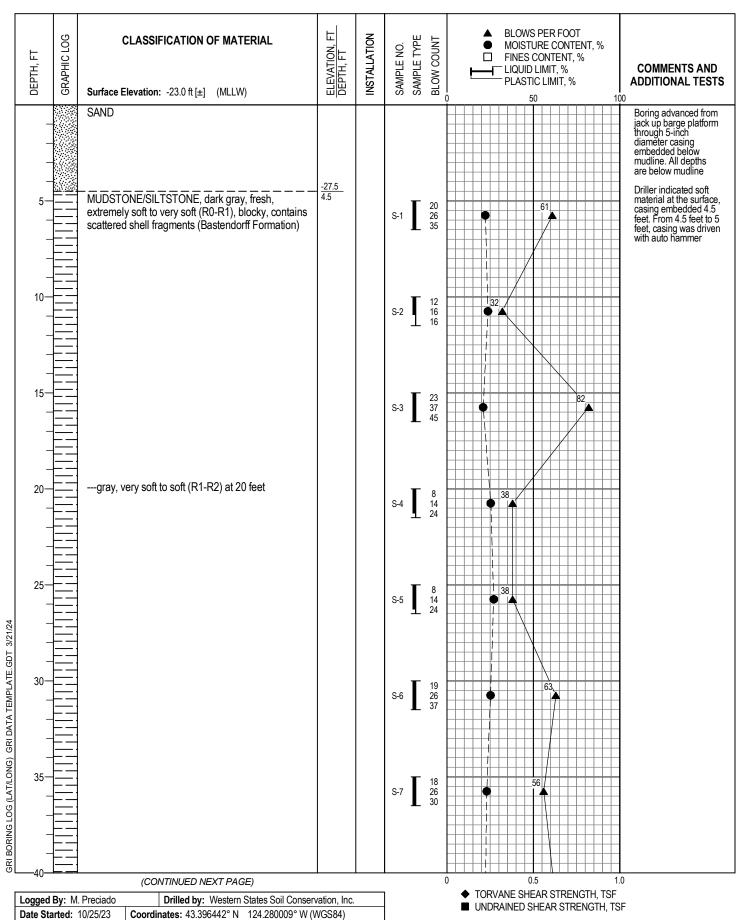
- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

2023 JOB NO. 5128 FIG. 48A



Logged By: M. Preciado Date Started: 10/23/23 Coordinates: 43.398739° N 124.283695° W (WGS84) Hammer Type: Auto Hammer Drilling Method: Mud Rotary Equipment: CME 75 Truck-Mounted Drill Rig Weight: 140 lb Hole Diameter: 5 in. **Drop:** 30 in. Energy Ratio: 0.8 Note: See Legend for Explanation of Symbols

UNDRAINED SHEAR STRENGTH, TSF



2023 JOB NO. 5128 FIG. 49A

- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

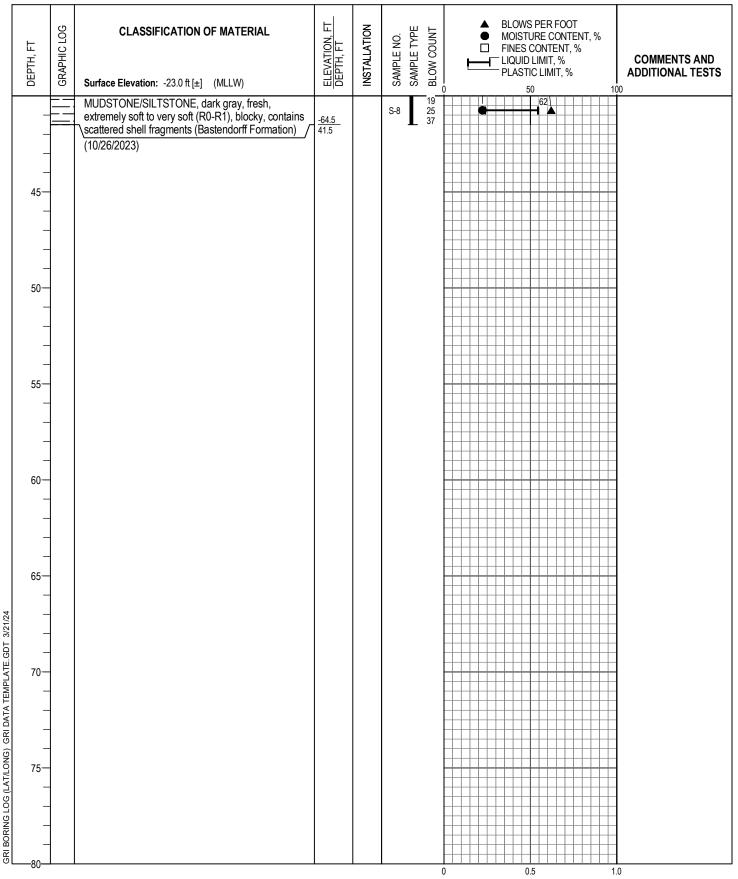
GRIB

Hammer Type: Auto Hammer

Weight: 140 lb

Energy Ratio: 0.8

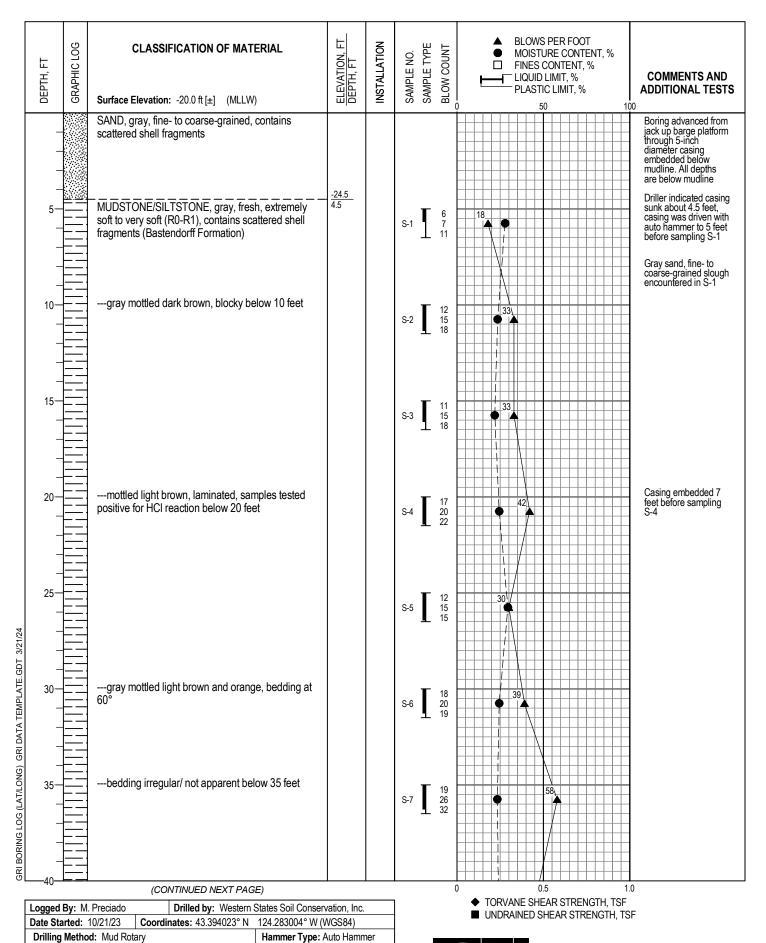
Drop: 30 in.


Drilling Method: Mud Rotary

Hole Diameter: 5 in.

Equipment: CME 75 Truck-Mounted Drill Rig

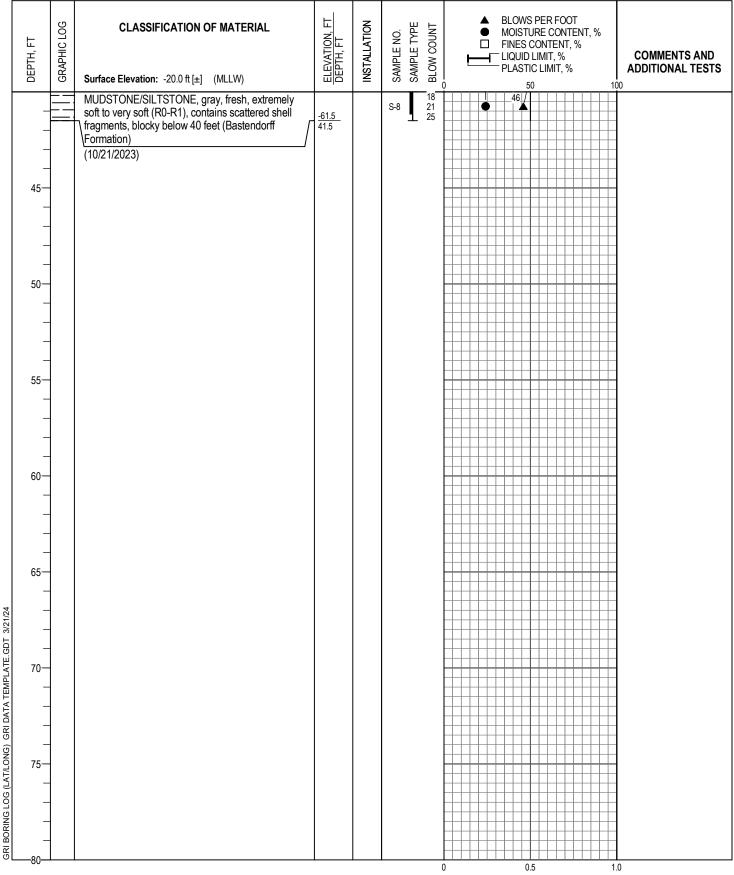
Note: See Legend for Explanation of Symbols


BORING B-8-23

- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

2023 JOB NO. 5128 FIG. 50A

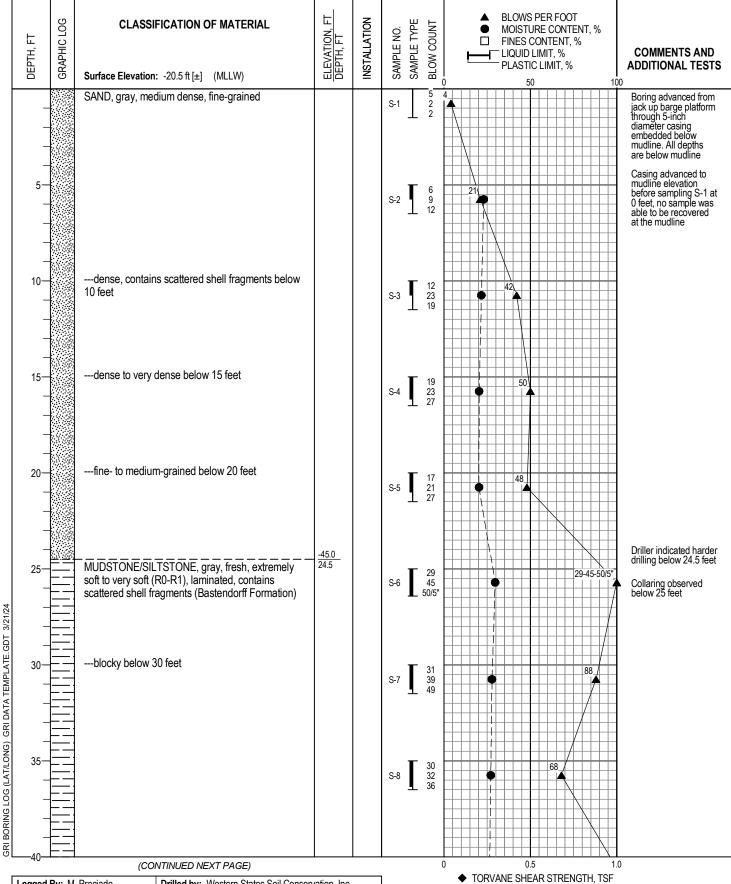
Weight: 140 lb


Drop: 30 in. Energy Ratio: 0.8

Equipment: CME 75 Truck-Mounted Drill Rig

Note: See Legend for Explanation of Symbols

Hole Diameter: 5 in.


GRI BORING B-9-23

- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

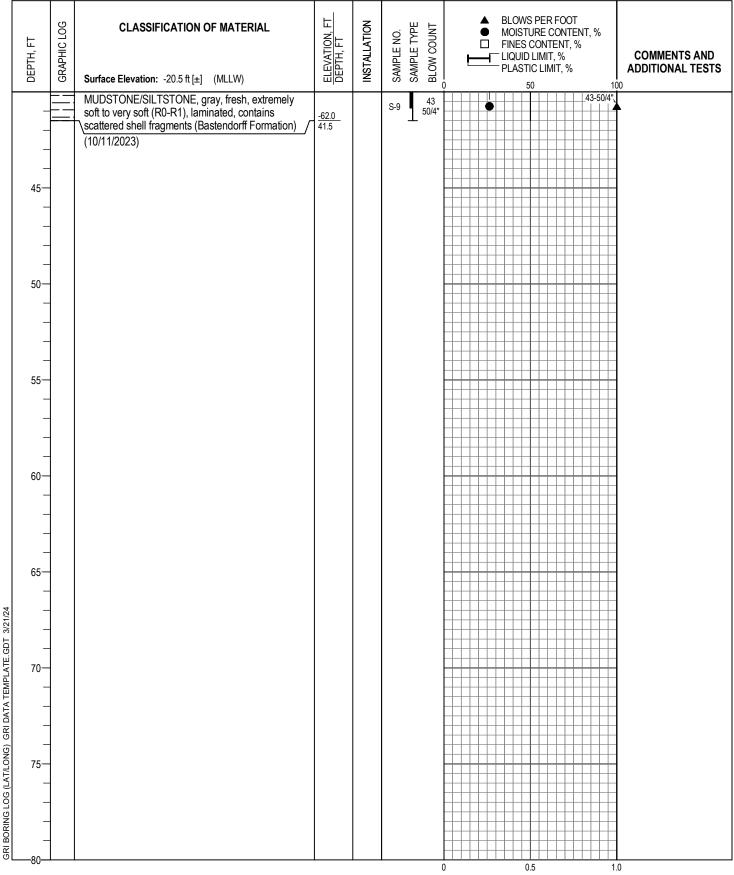
2023 JOB NO. 5128 FIG. 51A

Logged By: M. Preciado Drilled by: Western States Soil Conservation, Inc.

Date Started: 10/10/23 Coordinates: 43.39425° N 124.287132° W (WGS84)

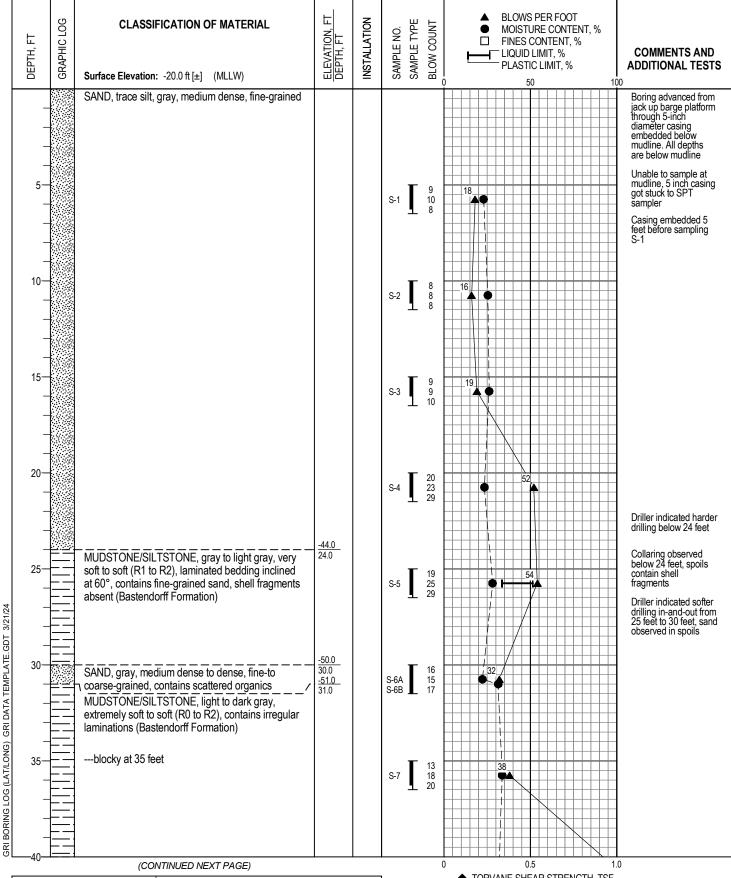
Drilling Method: Mud Rotary
Equipment: CME 75 Truck-Mounted Drill Rig
Hole Diameter: 5 in.

Note: See Legend for Explanation of Symbols


Prilled by: Western States Soil Conservation, Inc.

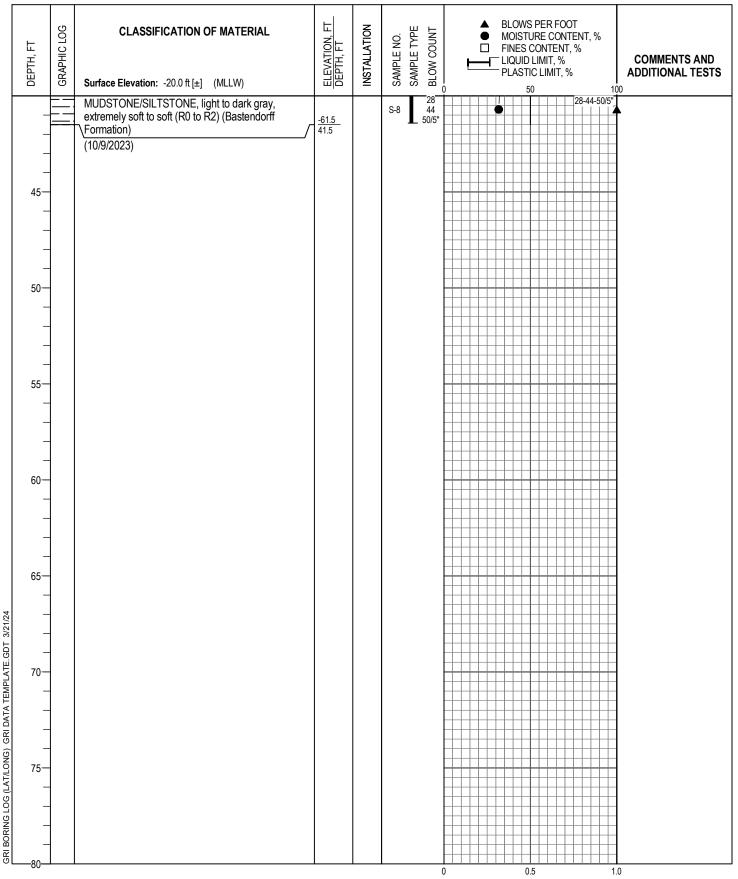
Hammer Type: Auto Hammer Weight: 140 lb
Drop: 30 in.
Energy Ratio: 0.8

UNDRAINED SHEAR STRENGTH, TSF


2023 JOB NO. 5128 FIG. 52A

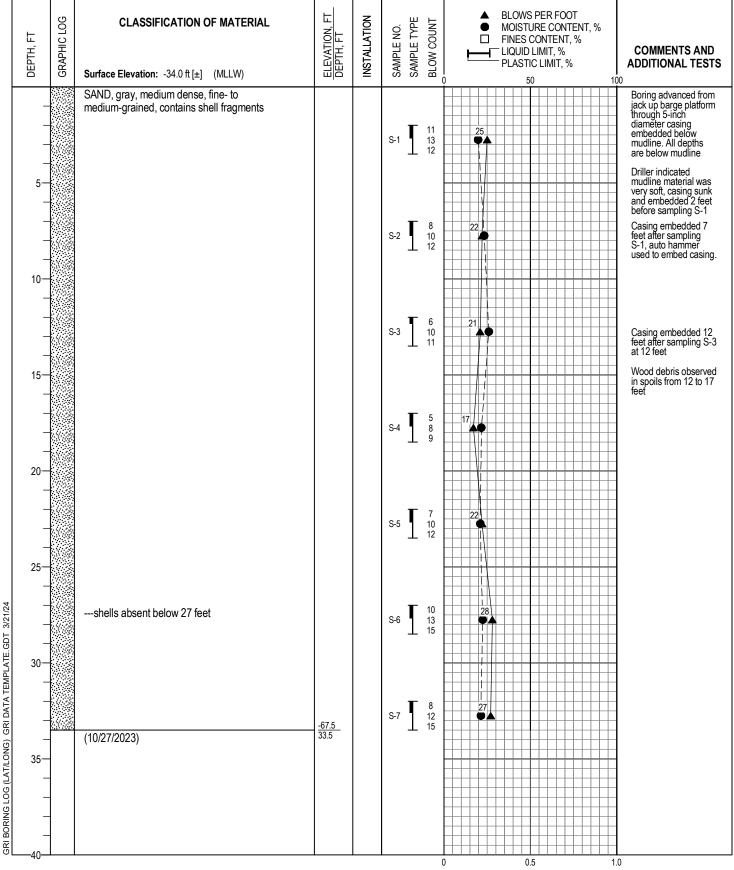
- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

2023 JOB NO. 5128 FIG. 52A



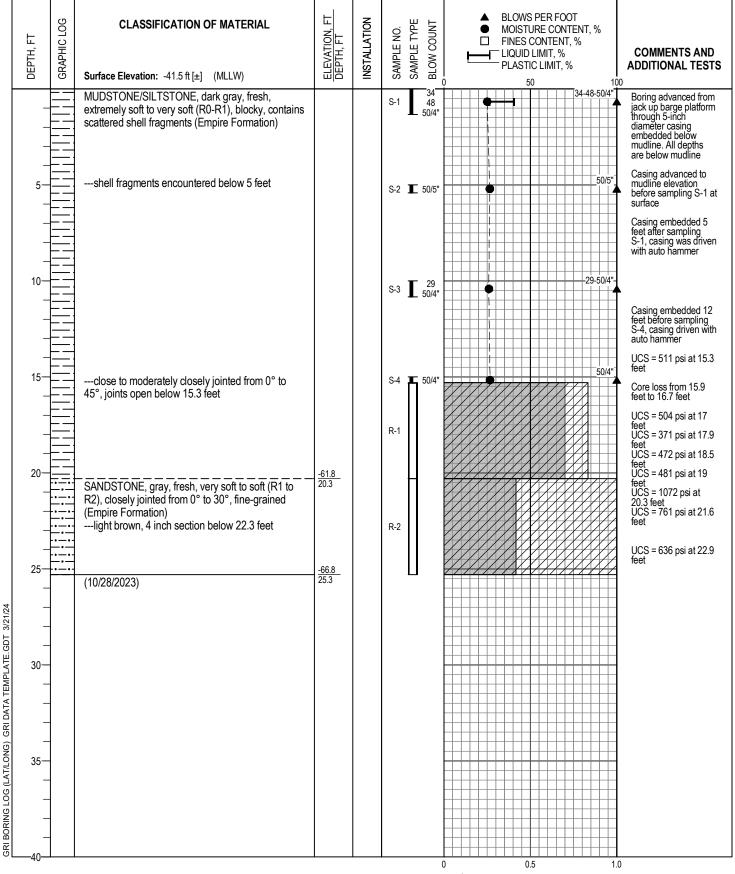
Logged By: M. Preciado	Drilled by: Western	States Soil Conservation, Inc.
Date Started: 10/9/23	Coordinates: 43.39087° N	124.289567° W (WGS84)
Drilling Method: Mud Rota Equipment: CME 75	Hammer Type: Auto Hammer Weight: 140 lb	
Hole Diameter: 5 in.	Drop: 30 in.	
Note: See Legend for Expla	nation of Symbols	Energy Ratio: 0.8

◆ TORVANE SHEAR STRENGTH, TSF■ UNDRAINED SHEAR STRENGTH, TSF



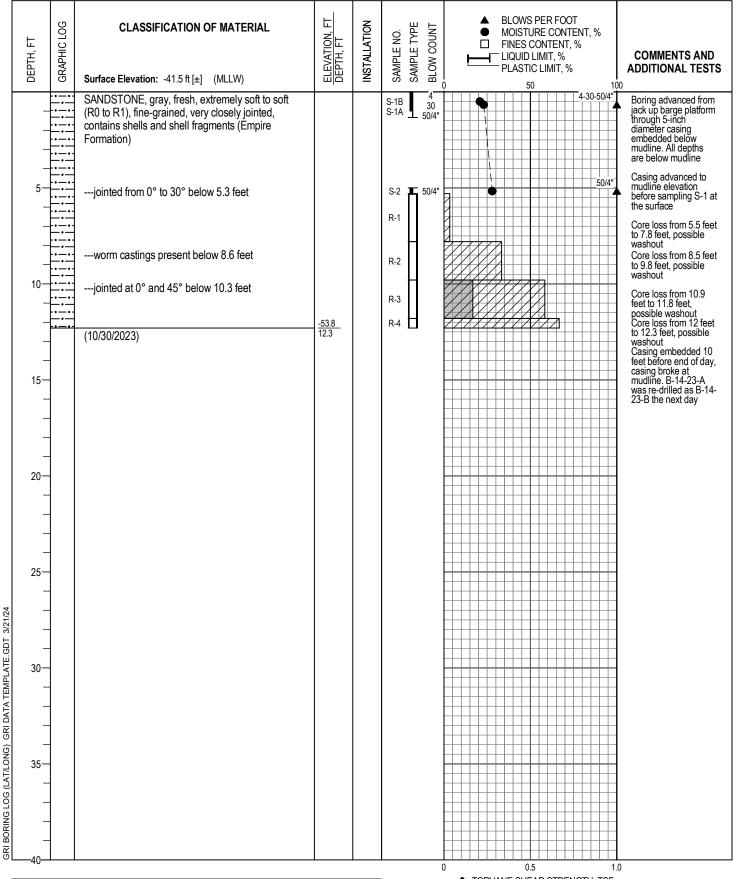
2023 JOB NO. 5128 FIG. 53A

- ◆ TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF



Logged By: M. Preciado	States Soil Conservation, Inc.	
Date Started: 10/27/23	124.319644° W (WGS84)	
Drilling Method: Mud Rota	Hammer Type: Auto Hammer	
Equipment: CME 75	Weight: 140 lb	
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Expla	Energy Ratio: 0.8	

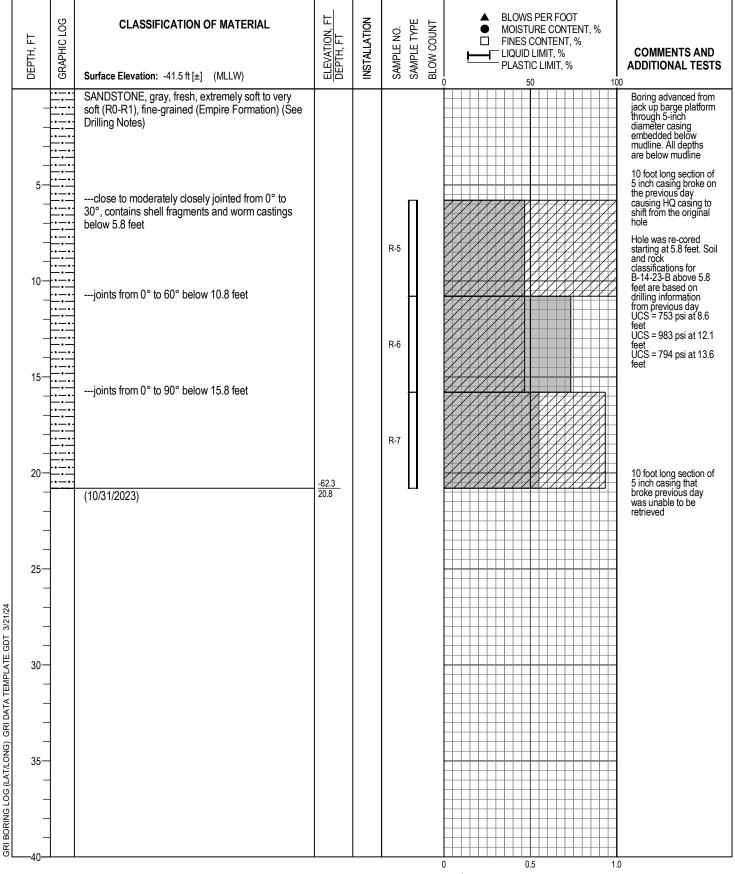
- TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF



2023 JOB NO. 5128 FIG. 54A

Logged By: M. Preciado	Drilled by: Western	States Soil Conservation, Inc.
Date Started: 10/28/23	Coordinates: 43.353704° N	124.338351° W (WGS84)
Drilling Method: Mud Rota Equipment: CME 75 Hole Diameter: 5 in.	Hammer Type: Auto Hammer Weight: 140 lb Drop: 30 in.	
Note: See Legend for Expla	Energy Ratio: 0.8	

- ◆ TORVANE SHEAR STRENGTH, TSF■ UNDRAINED SHEAR STRENGTH, TSF
- GRI BORING B-13-23


Logged By: M. Preciado	Drilled by: Western States Soil Conservation, Inc.	
Date Started: 10/30/23	Coordinates: 43.355129° N	124.339197° W (WGS84)
Drilling Method: Mud Rotary Equipment: CME 75 Truck-Mounted Drill Rig		Hammer Type: Auto Hammer Weight: 140 lb
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Expla	nation of Symbols	Energy Ratio: 80%

- TORVANE SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

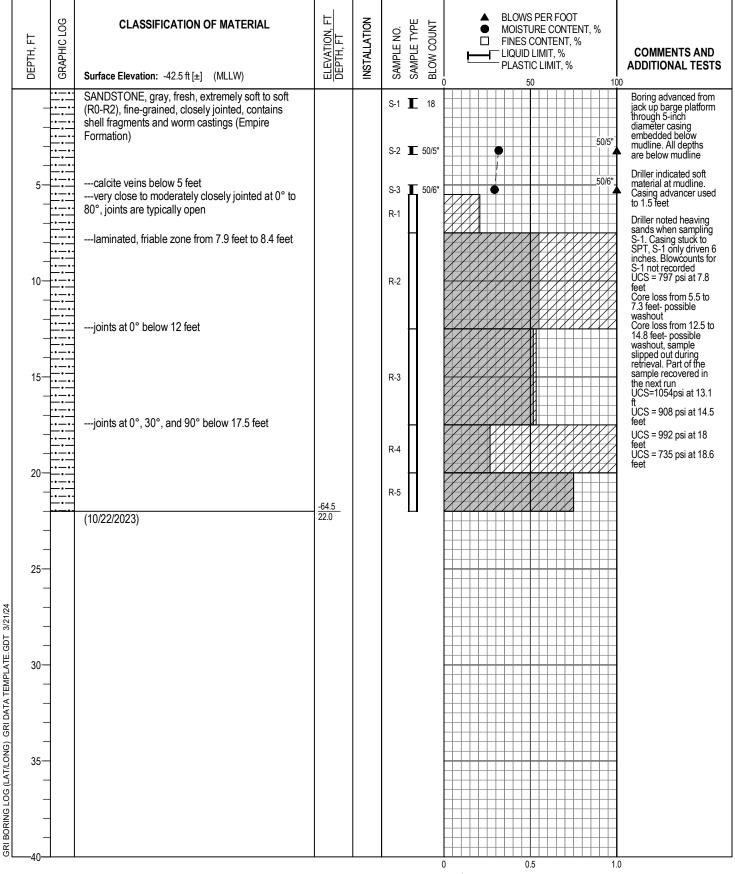
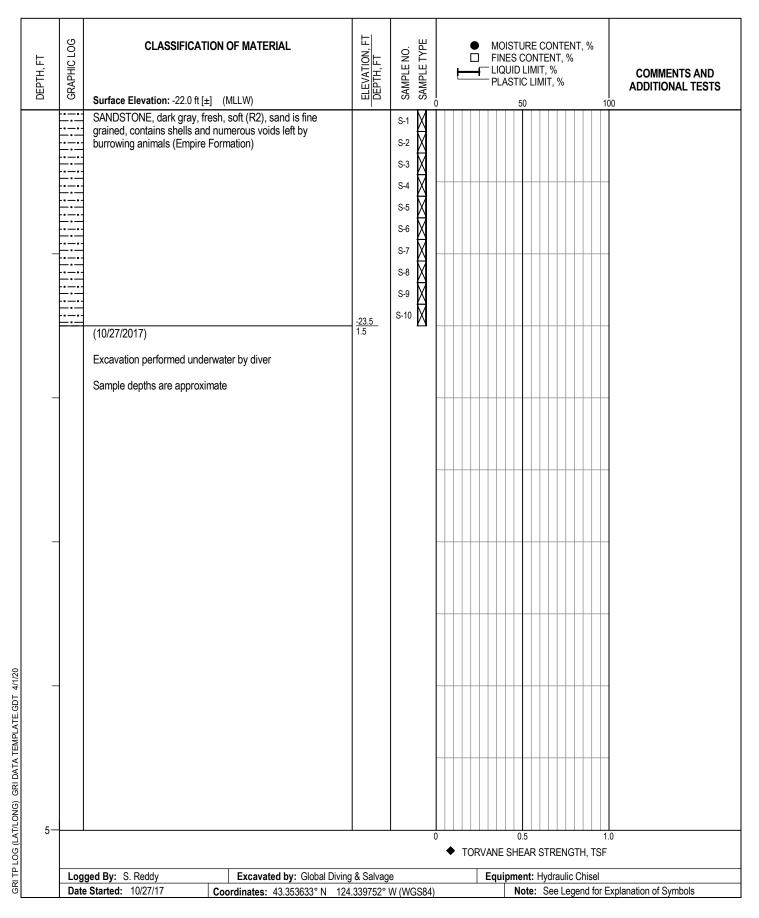

BORING B-14-23A

FIG. 56A 2023 JOB NO. 5128

Logged By: M. Preciado	Drilled by: Western States Soil Conservation, Inc.	
Date Started: 10/31/23	Coordinates: 43.355129° N	124.339197° W (WGS84)
Drilling Method: Mud Rot Equipment: CME 75	ary Truck-Mounted Drill Rig	Hammer Type: Auto Hammer Weight: 140 lb
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Expla	nation of Symbols	Energy Ratio: 0.8

- ◆ TORVANE SHEAR STRENGTH, TSF■ UNDRAINED SHEAR STRENGTH, TSF
- GRI BORING B-14-23B



Logged By: M. Preciado	Drilled by: Western States Soil Conservation, Inc.	
Date Started: 10/21/23	Coordinates: 43.353916° N	124.33952° W (WGS84)
	ary Truck-Mounted Drill Rig	Hammer Type: Auto Hammer Weight: 140 lb
Hole Diameter: 5 in.		Drop: 30 in.
Note: See Legend for Expla	nation of Symbols	Energy Ratio: 0.8

- TORVANE SHEAR STRENGTH, TSFUNDRAINED SHEAR STRENGTH, TSF
- UNDRAINED SHEAR STRENGTH, TSF

2023 JOB NO. 5128 FIG. 58A

TEST PIT DE-1

2020 JOB NO. 5128 FIG. 59A

 OREGON INTERNATIONAL PORT OF	COOS BAY SECTION 204(f)/408 PROJECT GEOTECHNICAL DATA REPORT (GDR)
D / O.	Bloods
ROCK CO	ore Photographs From 2010

Boring 4a, Run 1, 19 - 24 ft depth

Boring 4b, Run 1, 9 – 14 ft depth

Boring 4b, Run 2, 14 - 19 ft depth

Boring 4b, Run 3 to Run 4, 19 – 29 ft depth

Boring 4b, Run 5, 29 - 34 ft depth

Boring 4b, Run 6, 34 – 39 ft depth

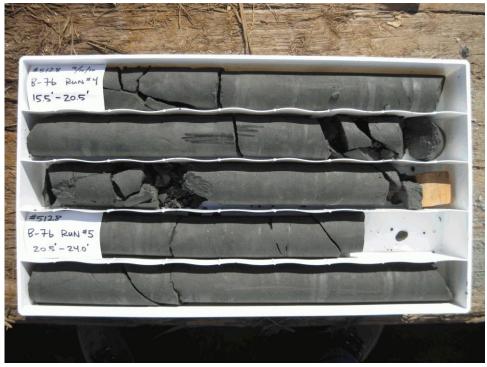
Boring 5, Run 1 to Run 3, 7.5 – 16.5 ft depth

Boring 5, Run 4, 16.5 – 21.5 ft depth

Boring 6, Run 1 to Run 4, 0 - 16 ft depth

Boring 6, Run 5 to Run 6, 16 – 26 ft depth

Boring 7, Run 1 to Run 2, 0 - 7 ft depth


Boring 7, Run 3 to Run 4, 7 – 15 ft depth

Boring 7b, Run 1 to Run 2, 1 - 11 ft depth

Boring 7b, Run 3, 11 – 15.5 ft depth

Boring 7b, Run 4 to Run 5, 15.5 - 24 ft depth

OREGON INTERNATIONAL PORT OF COOS BAY SECTION 204(f)/408 PROJEC GEOTECHNICAL DATA REPORT (GDI
Dook Cous Photographs From 2046
Rock Core Photographs From 2016

Boring 15, Run 1 to Run 2, 0 - 8.5 ft depth

Boring 15, Run 3, 8.5 - 13.5 ft depth

Boring 15, Run 4, 13.5 - 18.5 ft depth

Boring 15, Run 5, 18.5 - 23.5 ft depth

Boring 16, Run 1 to Run 4, 0 - 16 ft depth

Boring 18, Run 1, 11.5 - 15 ft depth

Boring 21, Run 1 to Run 4, 3.5 - 14 ft depth

Boring 21, Run 5 to Run 7, 14 - 23 ft depth

Boring 22, Run 1 to Run 3, 11 - 26 ft depth

Boring 22, Run 4, 26 - 31 ft depth

Boring 23, Run 1 to Run 3, 6 - 13 ft depth

Boring 24, Run 1 to Run 2, 4 - 11 ft depth


Boring 24, Run 3 to Run 4, 11 - 21 ft depth

Boring 24, Run 5, 21 - 26 ft depth

Boring 25, Run 2 to Run 3, 5 - 15 ft depth

Boring 25, Run 4, 15 - 20 ft depth

Note: No recovery in boring B-25, Run 1, 3-5 ft depth

Boring 26, Run 1 and Run 3, 4 - 15 ft depth

Boring 27, Run 1 to Run 2, 4 - 14 ft depth

Note: No recovery in boring B-26, Run 2, 5-10 ft depth

Boring 27, Run 3 to Run 4, 14 - 22 ft depth

Boring 27, Run 5, 22 - 27 ft depth

Boring 28, Run 1, 6 - 11 ft depth

Boring 28, Run 2 to Run 3, 11 - 21 ft depth

Boring 29, Run 1 to Run 2, 0 - 10 ft depth

Boring 29, Run 3, 10 - 15 ft depth

Boring 30, Run 1 to Run 2, 12 - 22 ft depth

Boring 30, Run 3 to Run 4, 22 - 30.5 ft depth

Boring 31, Run 1 to Run 2, 4 - 14 ft depth

Boring 31, Run 3 to Run 4, 14 - 24 ft depth

Boring 31, Run 5, 24 - 29 ft depth

Boring 32, Run 1 to Run 2, 2.5 – 12.5 ft depth

Boring 32, Run 3 to Run 4, 12.5 - 20 ft depth

Boring 33, Run 1 to Run 3, 0 - 15 ft depth

Boring 33, Run 4 to Run 5, 15 - 20 ft depth

Boring 33, Run 6, 20 - 21 ft depth

Note: The bottom 3 ft of rock core from Run 4 should be labeled as Run 5. The bottom 4 ft of rock core from Run 6 should be labeled as Run 7.

Boring 33, Run 7 to Run 8, 21 - 31 ft depth

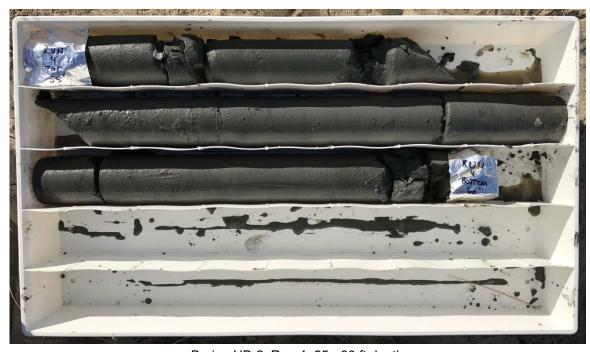
Boring 40, Run 1 to Run 2, 3 - 13 ft depth

Boring 40, Run 3 to Run 5, 13 - 24 ft depth

Boring 40, Run 6 to Run 7, 24 - 30 ft depth

Boring UB-1, Run 1 to Run 3, 45.3 - 59 ft depth

Boring UB-1, Run 4 to Run 5, 59 - 69 ft depth


Boring UB-1, Run 6, 69 - 74 ft depth (Run 7 not photographed during field work)

Boring UB-1, Run 6 to Run 7, 69 - 79 ft depth (photo taken in lab 1/10/2017)

Boring UB-2, Run 1 to Run 3, 40.5 - 55 ft depth

Boring UB-2, Run 4, 55 - 60 ft depth

Boring UB-2, Run 5, 60 - 65 ft depth

Boring UB-2, Run 6 to Run 7, 65 - 75 ft depth

Boring UB-3, Run 1 to Run 4, 30.3 - 50 ft depth

Boring UB-3, Run 5 to Run 6, 50 - 60 ft depth

Boring UB-3, Run 7 to Run 8, 60 - 70 ft depth

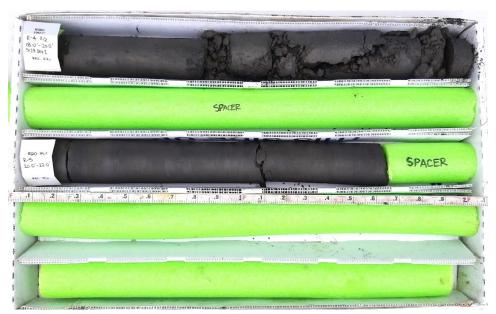
OREGON INTERNATIONAL PORT OF COOS BAY SECTION 204(f)/408 PROJE GEOTECHNICAL DATA REPORT (GL
SESTEONING EDITITIES ON TOE
Rock Core Photographs From 202

Boring B-4-23, Run 1 to Run 2, 23.3 – 33.3 ft depth

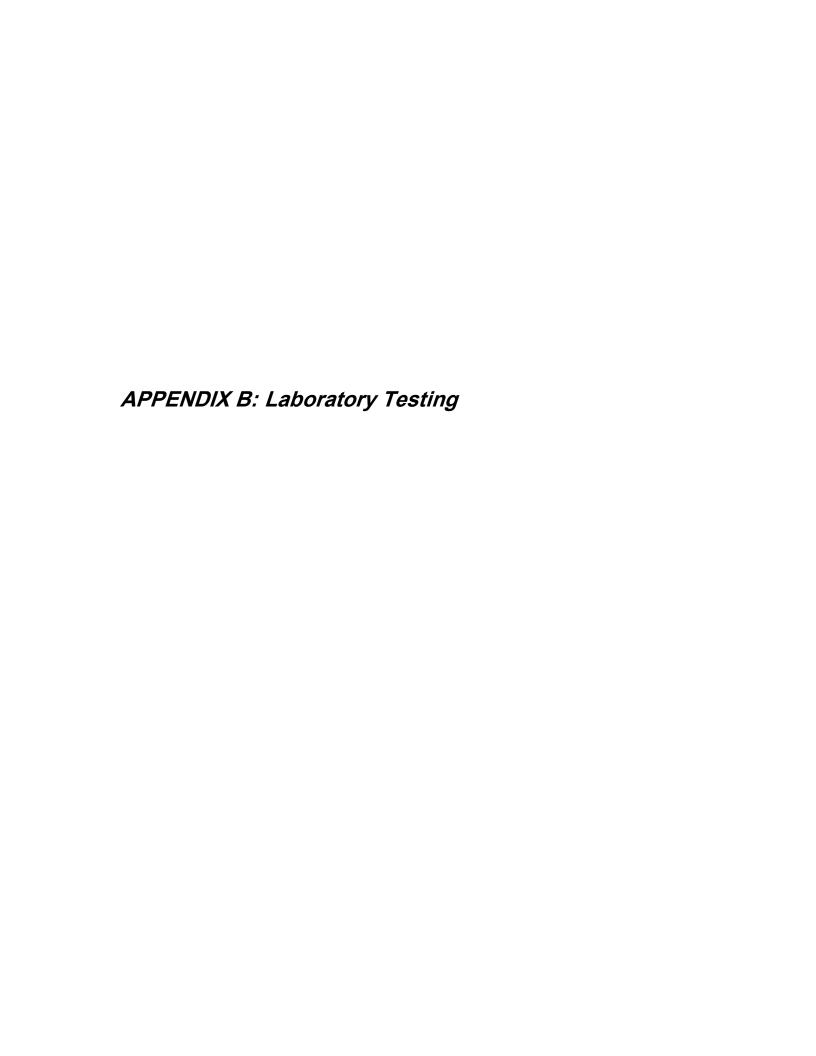
Boring B-13-23, Run 1 to Run 2, 15.3 – 25.3 ft depth

Boring B-14-23, Run 1 to Run 5, 5.3 – 10.8 ft depth

*Boring B-14-23 was re-drilled as B-14-23-B due to broken casing


Boring B-14-23, Run 6 to Run 7, 10.8 – 18.3 ft depth

Boring B-14-23, Run 7, 18.3 - 20.8 ft depth



Boring B-15-23, Run 1 to Run 4, 5.5 - 18.0 ft depth

Boring B-15-23*, Run 4 to Run 5, 18.0 - 22.0 ft depth

*Boring B-15-23 was logged in the field as B-16-23

Table of Contents – Appendix B

B-1.0 Laboratory Testing	B-1
B-1.1 General	B-1
B-1.2 Soil Testing	B-1
B-1.2.1 Natural Moisture Content	B-1
B-1.2.2 Atterberg Limits	B-1
B-1.2.3 Grain Size Distribution	B-1
B-1.3 Rock Core Testing	B-2
B-1.3.1 General	B-2
B-1.3.2 Unconfined Compressive Strength	B-2
B-1.3.3 Point Load Strength Index	B-2
B-1.3.4 Splitting Tensile Strength	B-2
B-1.3.5 Slake Durability	B-2
B-1.3.6 Cerchar Abrasion Index	B-2

List of Tables – Appendix B

Table 1B: Summary of Laboratory Test Results

List of Figures – Appendix B

Figure 1B and 2B Plasticity Chart

Figures 3B through 14B Grain Size Distribution

Pages 15B through 117B Unconfined Compressive Strength

Figures 118B through 133B Unconfined Compressive Strength (2023)

Pages 134B through 234B Point Load Strength Index

Figures 235B through 238B Point Load Strength Index (2023)

Pages 239B through 274B Splitting Tensile Strength

Figure 275B Splitting Tensile Strength (2023)

Pages 276B through 281B Slake Durability

Figures 282B through 285B Cerchar Abrasion Index

Figures 286B through 291B Cerchar Abrasion Index (2023)

B-1.0 LABORATORY TESTING

B-1.1 GENERAL

The soil samples obtained from the borings were examined in GRI's laboratory, where the physical characteristics of the samples were noted and the field classifications modified where appropriate. At the time of classification, the natural moisture content of the soil samples was determined. Additional testing included washed-sieve analyses (gradation) and Atterberg limits. The rock-core samples were examined at either the GRI or Cooper Testing Labs laboratories located in Beaverton and McMinnville, Oregon, respectively. Physical characteristics of the rock-core samples were noted, and the field classification was modified where appropriate. Rock-core testing included unconfined compressive strength, point load strength index, splitting tensile strength, slake durability, and Cerchar abrasion index. Rock testing was completed by ACS Testing, Inc., in Tigard, Oregon, during the 2010 laboratory testing program and Cooper Testing Labs in Palo Alto, California, during the 2016 laboratory testing program. For the 2023 drilling operations, core samples were sent to Intertek PSI Portland Lab in Portland, Oregon, and GeoTesting Express, LLC lab in Acton, Massachusetts. A summary of laboratory testing completed by GRI during the 2010, 2016, and 2023 laboratory testing programs is provided in Table 1B. The following sections describe the testing program in more detail.

B-1.2 SOIL TESTING

B-1.2.1 Natural Moisture Content

The natural moisture content of soil samples was determined to be in conformance with ASTM International (ASTM) D2216. The test results are shown on the boring logs, Figures 1A through 58A.

B-1.2.2 Atterberg Limits

Atterberg-limit determinations were performed on samples of soil and residual rock obtained from borings B-2, B-4-23, B-7-23, B-8-23, B-11-23, and B-13-23. The test was performed in substantial conformance with ASTM D4318. The test data are used for soil-classification purposes and as an indicator of the engineering properties of the fine-grained soils encountered in some of the explorations. The results of the Atterberg-limits determinations are shown on Figures 1B and 2B and summarized in Table 1B.

B-1.2.3 Grain Size Distribution

A total of 26 grain-size distribution tests were performed in substantial conformance with ASTM C117/C136 to evaluate the gradation characteristics of representative sand samples obtained from the borings. The test results are summarized graphically on Figures 3B through 14B and summarized in Table 1B.

B-1.3 ROCK CORE TESTING

B-1.3.1 General

Rock-strength tests were typically completed on the core samples with better recovery and strengths. The recovered lengths of some of the softer rock cores were not sufficient for testing.

B-1.3.2 Unconfined Compressive Strength

The unconfined compressive strength of representative rock-core samples obtained from the borings was determined in conformance with ASTM D7012D. At the time of testing, the dry unit weight of the core samples was also determined. The results of the unconfined compressive strength testing are shown on Pages 15B through 117B, Figures 118B through 133B, and summarized in Table 1B.

B-1.3.3 Point Load Strength Index

The point load strength index testing of representative rock-core samples obtained from the borings and diving exploration was performed in conformance with ASTM D5731. The results of the point load strength index testing are shown on Pages 134B through 234B, and Figures 235B through 238B and summarized in Table 1B.

B-1.3.4 Splitting Tensile Strength

The splitting tensile strength of representative rock-core samples obtained from the borings was determined in conformance with ASTM D3967. The results of the splitting tensile strength testing are shown on Pages 239B through 274B, and Figure 275B, and summarized in Table 1B.

B-1.3.5 Slake Durability

The slake durability of representative rock-core samples obtained from the borings was determined in conformance with ASTM D4644-87. The results of the slake durability testing are shown on Pages 276B through 281B and summarized in Table 1B.

B-1.3.6 Cerchar Abrasion Index

The Cerchar abrasion index of representative rock-core samples obtained from the borings was determined in conformance with ASTM D7625-10. The results of the Cerchar abrasion index testing are shown on Figures 282B through 291B and summarized in Table 1B.

Table 1B: Summary of Laboratory ResultsPage 1 of 4

								Soil Testin					Rock T	esting		
						Grai	in Size Dist	ribution	Atterberg	g Limits	_					
Boring	Sample	(feet)	Elevation (feet, MLLW)	Soil/Rock Type	Geologic Formation			Gravel (%)	Plasticity Index	Liquid Limit	Dry Unit Weight (pcf)	Unconfined Compressive Strength (psi)	Average Point Load Strength Index (psi)	Splitting Tensile Strength (psi)	Slake Durability (Second Cycle) (%)	Cerchar Abrasion Index
B-2	S-4	20.0	-38.5	SAND	N/A	6.4	93.6	0.0								
B-2	S-7	35.0	-53.5	SILT	N/A				40	93						
B-4A	S-2	10.0	-39.5	SAND	N/A	5.3	94.7	0.0								
B-4B	R-2	16.5	-37.0	SILTSTONE	BASTENDORFF						117	715				
B-4B	R-2	26.5	-47.0	SILTSTONE	BASTENDORFF						115	401			0.0	
B-4B B-7A	R-6 R-2	37.0 4.0	-57.5 -25.0	SILTSTONE	BASTENDORFF EMPIRE						115 111	287 633			0.2	
B-7A	R-2	7.5	-28.5	SANDSTONE	EMPIRE						110	665				
B-7A	R-4	12.5	-33.5	SANDSTONE	EMPIRE						109	1193				
B-7R	R-2	7.5	-44.5	SANDSTONE	EMPIRE						103	1668			89.9	
B-7B	R-3	15.0	-52.0	SANDSTONE	EMPIRE						106	784			00.0	
B-7B	R-5	23.0	-60.0	SANDSTONE	EMPIRE						111	708			14.5	
B-9	S-1	5.0	-33.0	SAND	N/A	4.5	95.5	0.0								
B-10	S-1	3.0	-22.0	SAND	N/A	5.2	93.8	1.0								
B-10	S-6	15.0	-34.0	SAND	N/A	4.8	95.2	0.0								
B-10	S-11	30.0	-49.0	SAND	N/A	4.8	95.2	0.0								
B-11	S-1	5.0	-43.0	SAND	N/A	4.5	95.5	0.0								
B-11	S-3	15.0	-53.0	SAND	N/A	5.8	94.2	0.0								
B-12	S-1	5.0	-43.0	SAND	N/A	4.2	90.5	5.4								
B-12	S-2	10.0	-48.0	SAND	N/A	5.1	94.9	0.0								
B-13	S-1	5.0	-39.5	SAND	N/A	3.9	95.6	0.4								
B-13	S-2	10.0	-44.5	SAND	N/A	6.1	93.9	0.0								
B-13	S-4	20.0	-54.5	SAND	N/A	7.7	92.3	0.0								
B-14	S-1	5.0	-43.5	SAND	N/A	6.1	93.9	0.1								
B-14	S-3	15.0	-53.5	SAND	N/A	7.8	92.2	0.0								
B-15	R-1	2.0	-35.0	SANDSTONE	COALEDO						149	11361	688			
B-15	R-2	5.5	-38.5	SANDSTONE	COALEDO						127	2554	98	81		2.3
B-15	R-3	9.5	-42.5	SANDSTONE	COALEDO						131	1461	54		60.3	
B-15	R-4	15.5	-48.5	SANDSTONE	COALEDO						124	1335	67	92	18.9	
B-15	R-5	18.5	-51.5	SANDSTONE	COALEDO						144	4226	51			
B-15	R-5	22.5	-55.5	SANDSTONE	COALEDO						126	1150	264	65		
B-17	S-1	4.0	-42.5	SAND	N/A	4.9	92.6	2.5								
B-19	S-1	5.0	-39.0	SAND	N/A	5.2	75.3	19.5								
B-19	S-2	10.0	-44.0	SAND	N/A	7.1	88.3	4.6								
B-20	S-1 R-3	5.0 6.5	-45.0 36.5	SAND SILTSTONE	N/A BASTENDORFF	5.0	89.4	5.6					34		0.1	
B-21 B-21	R-5	16.0	-36.5 -46.0	SILTSTONE	BASTENDORFF								5		0.1	
B-21 B-21	R-7	20.5	-46.0 -50.5	SILTSTONE	BASTENDORFF						94	180	j .	29	6.3	
B-21 B-22	R-7	16.0	-50.5 -40.0	SILTSTONE	BASTENDORFF						34	100		29	0.6	
B-23	R-2 R-1	6.0	-45.5	SILTSTONE	BASTENDORFF								7		0.0	
B-23	R-2	7.0	-46.5	SILTSTONE	BASTENDORFF								41			
D-20	11-4	1.0	-+0.0	CILIOIONE	DI CILINDONI I								71			

Table 1B: Summary of Laboratory Results Page 2 of 4

								Soil Testin	g				Rock T	esting		
						Grain	Size Distr	ibution	Atterberg	Limits	_					
Boring	Sample	(feet)	Elevation (feet,	Soil/Rock Type	Geologic Formation	Fines (%)	Sand (%)	Gravel (%)	Plasticity Index	Liquid Limit	Dry Unit Weight (pcf)	Unconfined Compressive Strength (psi)	Average Point Load Strength Index (psi)	Splitting Tensile Strength (psi)	Slake Durability (Second Cycle) (%)	Cerchar Abrasion Index
B-23	R-3	8.5	-48.0	SILTSTONE	BASTENDORFF						99	897			46.2	
B-23 B-23	R-3 R-3	9.5 11.5	-49.0 -51.0	SILTSTONE	BASTENDORFF BASTENDORFF						98 98	608 912		55		0.1
B-23	R-3	4.0	-32.5	SANDSTONE	EMPIRE						118	616	15	38		0.1
B-24	R-2	6.0	-34.5	SANDSTONE	EMPIRE						119	583	16			
B-24	R-2	8.0	-36.5	SANDSTONE	EMPIRE						120	663	27		0.0	
B-24	R-3	11.0	-39.5	SANDSTONE	EMPIRE						119	631	21			0.2
B-24	R-3	15.0	-43.5	SANDSTONE	EMPIRE						121	456	21			
B-24	R-4	17.0	-45.5	SANDSTONE	EMPIRE						124	456				
B-24	R-4	18.0	-46.5	SANDSTONE	EMPIRE						124	458	20	32		
B-24	R-5	21.0	-49.5	SANDSTONE	EMPIRE						126	188				
B-24	R-5	24.0	-52.5	SANDSTONE	EMPIRE						120	377	12	12	0.0	
B-25	R-2	5.0	-37.0	SANDSTONE	EMPIRE								10			
B-25	R-2	6.0	-38.0	SANDSTONE	EMPIRE						109	160	13			
B-25	R-2	8.0	-40.0	SANDSTONE	EMPIRE						404	400	8	22	0.0	
B-25	R-3 R-4	10.0 15.0	-42.0 -47.0	SANDSTONE SANDSTONE	EMPIRE EMPIRE						104 110	199 209	8		0.6	
B-25 B-25	R-4 R-4	17.0	-47.0 -49.0	SANDSTONE	EMPIRE						107	277	7	14		
B-26	R-1	4.0	-43.0	SANDSTONE	EMPIRE						107	211	9	14	0.1	
B-26	R-3	13.0	-52.0	SANDSTONE	EMPIRE						107	171	7	13		
B-27	R-1	4.0	-30.5	SANDSTONE	EMPIRE						95	1746	73	119		
B-27	R-1	7.0	-33.5	SANDSTONE	EMPIRE						96	1662	81		93.0	
B-27	R-2	11.0	-37.5	SANDSTONE	EMPIRE						96	1211	74			
B-27	R-2	12.0	-38.5	SANDSTONE	EMPIRE						99	1692	66			
B-27	R-3	16.0	-42.5	SANDSTONE	EMPIRE						94	1695	80			0.4
B-27	R-4	19.0	-45.5	SANDSTONE	EMPIRE						91	1655	73			
B-27	R-4	21.0	-47.5	SANDSTONE	EMPIRE						97	1816	66	101	94.3	
B-27	R-5	23.0	-49.5	SANDSTONE	EMPIRE						94	1711	73			
B-27	R-5	25.0	-51.5 30.5	SANDSTONE	EMPIRE						98	1555	75			
B-28 B-28	R-1 R-1	7.0	-39.5 -42.5	SANDSTONE SANDSTONE	EMPIRE EMPIRE						101	211 1580	68	119		
B-28	R-1	12.0	-42.5 -44.5	SANDSTONE	EMPIRE						96	1451	75	117	89.9	
B-28	R-2	15.0	-47.5	SANDSTONE	EMPIRE						98	1670	70			0.3
B-28	R-3	17.0	-49.5	SANDSTONE	EMPIRE						98	1610	70			
B-28	R-3	19.0	-51.5	SANDSTONE	EMPIRE						98	1064	71	146		
B-29	R-1	2.0	-40.0	SANDSTONE	EMPIRE								50	99		
B-29	R-2	5.0	-43.0	SANDSTONE	EMPIRE										89.5	
B-29	R-2	8.0	-46.0	SANDSTONE	EMPIRE								54			
B-29	R-3	12.0	-50.0	SANDSTONE	EMPIRE			<u> </u>			99	1512	55	91	90.6	0.4
B-30	S-1	3.0	-29.0	SAND	N/A	5.2	93.4	1.4								_
B-30	S-3	8.0	-34.0	SAND	N/A	14.1	83.4	2.5								

Table 1B: Summary of Laboratory ResultsPage 3 of 4

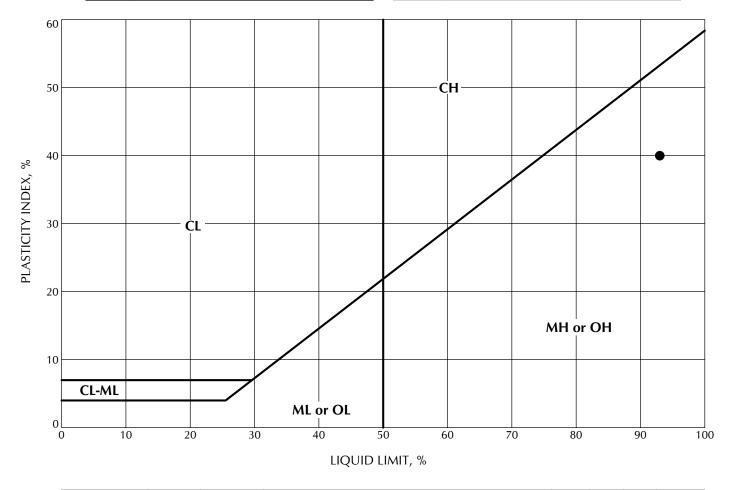
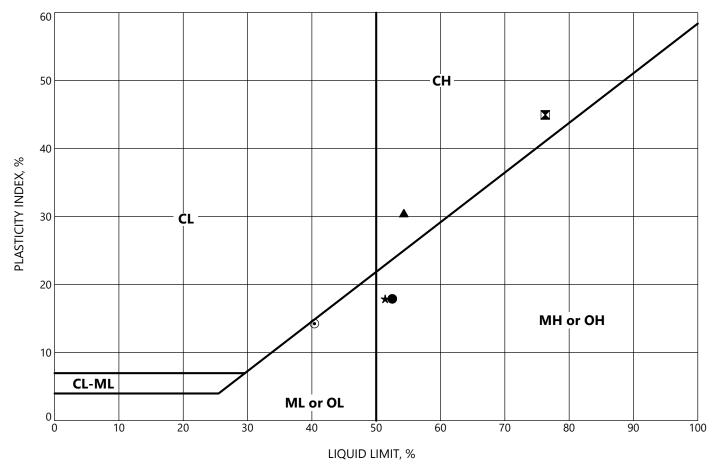

							Sc	oil Testing]				Rock T	esting		
						Grain	Size Distribut	tion	Atterberg	Limits	_					
Boring	Sample	Depth or Depth below mudline (feet)	MLLW)	Soil/Rock Type	Geologic Formation	Fines (%)	Sand (%) Gra	avel (%)	Plasticity Index	Liquid Limit	Dry Unit Weight (pcf)	Unconfined Compressive Strength (psi)	Average Point Load Strength Index (psi)	Splitting Tensile Strength (psi)	Slake Durability (Second Cycle) (%)	Cerchar Abrasion Index
B-30	R-1	12.0	-38.0	SANDSTONE	EMPIRE						110	542	44			
B-30	R-1	14.0	-40.0	SANDSTONE	EMPIRE						127	1095	35	25		
B-30	R-1	14.5	-40.5	SANDSTONE	EMPIRE										83.9	
B-30	R-2	18.0	-44.0	SANDSTONE	EMPIRE						112	555				
B-30	R-3	22.0	-48.0	SANDSTONE	EMPIRE						111	365	28	32	0.4	
B-30	R-3	25.0	-51.0	SANDSTONE	EMPIRE						114	531	33		0.1	
B-30	R-4	28.0	-54.0	SANDSTONE	EMPIRE						113	386	28			
B-30 B-31	R-4 R-1	30.0 4.0	-56.0 -27.5	SANDSTONE SANDSTONE	EMPIRE EMPIRE						113 111	339 495	17 27		0.0	
B-31	R-1	7.0	-30.5	SANDSTONE	EMPIRE						110	495 461	28		0.0	
B-31	R-2	10.0	-33.5	SANDSTONE	EMPIRE						109	448	25	50		
B-31	R-3	14.0	-37.5	SANDSTONE	EMPIRE						112	512	39	30		0.4
B-31	R-3	17.0	-40.5	SANDSTONE	EMPIRE						111	588	31			
B-31	R-4	20.0	-43.5	SANDSTONE	EMPIRE						114	513	31	72		
B-31	R-4	22.0	-45.5	SANDSTONE	EMPIRE						111	578	42			
B-31	R-5	24.0	-47.5	SANDSTONE	EMPIRE						109	619	27	36		
B-31	R-5	28.0	-51.5	SANDSTONE	EMPIRE						109	438	20			
B-32	R-1	2.5	-35.5	SANDSTONE	EMPIRE						102	1424	57	151	85.0	
B-32	R-1	6.5	-39.5	SANDSTONE	EMPIRE						96	1711	62			
B-32	R-2	8.5	-41.5	SANDSTONE	EMPIRE						101	1418	59			0.3
B-32	R-2	10.5	-43.5	SANDSTONE	EMPIRE						102	1319	61			
B-32	R-3	12.5	-45.5	SANDSTONE	EMPIRE						99	1544	57	100		
B-32	R-4	16.5	-49.5	SANDSTONE	EMPIRE						94	1769	73	138		
B-32	R-4	19.5	-52.5	SANDSTONE	EMPIRE						101	1296	44			
B-33	R-1	2.0	-23.5	SANDSTONE	EMPIRE							1681	73	186	95.6	0.3
B-33	R-2	6.0	-27.5	SANDSTONE	EMPIRE						98	1729	80			
B-33	R-2	9.0	-30.5	SANDSTONE	EMPIRE						92	1723	66			
B-33	R-3	13.0	-34.5	SANDSTONE	EMPIRE								13			
B-33	R-5	16.0	-37.5	SANDSTONE	EMPIRE						90	1576	56			
B-33	R-6	20.0	-41.5	SANDSTONE	EMPIRE								57			
B-33	R-7	21.0	-42.5	SANDSTONE	EMPIRE						103	1239	55	105	71.3	
B-33	R-8	26.0	-47.5	SANDSTONE	EMPIRE						96	1495	62			
B-37	S-1	3.0	-39.5	SILT	N/A	69.1	30.9	0.0								
B-37	S-3	7.5	-44.0	SAND	N/A	6.3	93.7	0.0								
B-38	S-1	5.0	-43.0	SAND	N/A	4.6	95.2	0.2								
B-38	S-2	7.5	-45.5	SAND	N/A	5.1	94.9	0.0								
B-38	S-4	12.5	-50.5	SAND	N/A	5.3	94.7	0.0								
B-40	R-1	3.0	-25.0	SANDSTONE	EMPIRE						111	335	21		2.2	
B-40	R-1	6.0	-28.0	SANDSTONE	EMPIRE						111	428	27	30	0.0	
B-40	R-2	10.0	-32.0	SANDSTONE	EMPIRE						112	389				
B-40	R-2	11.0	-33.0	SANDSTONE	EMPIRE						112	372	23			0.4

Table 1B: Summary of Laboratory Results

								Soil Testing					Rock T	esting		
						Grain	Size Dist		Atterberg	Limits				J		
Boring B-40	Sample R-3	Depth or Depth below mudline (feet)	Elevation (feet, MLLW) -38.0	Soil/Rock Type SANDSTONE	Geologic Formation EMPIRE	Fines (%)	Sand (%)	Gravel (%)	Plasticity Index	Liquid Limit	Dry Unit Weight (pcf)	Unconfined Compressive Strength (psi)	Average Point Load Strength Index (psi)	Splitting Tensile Strength (psi)	Slake Durability (Second Cycle) (%)	Cerchar Abrasion Index
B-40	R-5	21.0	-43.0	SANDSTONE	EMPIRE						109	258	21	29		
B-40	R-5	23.0	-45.0 -45.0	SANDSTONE	EMPIRE						109	327	27			
B-40	R-7	26.0	-48.0	SANDSTONE	EMPIRE						110	397	21	28	0.0	
B-40	R-7	28.0	-50.0	SANDSTONE	EMPIRE						111	465	24	20	0.0	
UB-1	S-3	7.5	-29.5	SANDSTONE	N/A	4.9	95.1	0.0			111	405	24			
	S-6	30.0		SAND			95.1	0.0								
UB-1			-52.0		N/A	4.8										
UB-1	S-8	40.0	-62.0	SAND	N/A	5.2	94.8	0.0					40		0.4	
UB-1	R-1	46	-32.2	SANDSTONE	EMPIRE								16		0.1	
UB-1	R-1	48	-34.2	SANDSTONE	EMPIRE								11			
UB-1	R-1	48.5	-34.7	SANDSTONE	EMPIRE						132	6673				
UB-1	R-3	57	-43.2	SANDSTONE	EMPIRE						110	700	22			
UB-1	R-4 R-5	60	-46.2	SANDSTONE	EMPIRE						116	730	28			0.4
UB-1		67	-53.2	SANDSTONE	EMPIRE						116	784	36	34		
UB-1 UB-1	R-6 R-7	71	-57.2	SANDSTONE	EMPIRE						116	663	40	50		
UB-1	S-1	77 5	-63.2 8.8	SANDSTONE SAND	EMPIRE N/A	4.1	95.5	0.4			116	619	23			
UB-2	S-3	5 15	-1.2	SAND	N/A N/A	4.1	95.5	0.4								
UB-2	S-5	25	-11.2	SAND	N/A	6.1	93.4	0.0								
UB-2	S-7	35	-21.2	SAND	N/A	6.3	93.7	0.0								
UB-2	R-2	46	-31.4	SANDSTONE	EMPIRE	0.5	55.1	0.0			115	355	15			
UB-2	R-3	50	-35.4	SANDSTONE	EMPIRE						117	312	14	27	8.6	
UB-2	R-4	56	-41.4	SANDSTONE	EMPIRE						115	449	8		0.0	
UB-2	R-5	63	-48.4	SANDSTONE	EMPIRE						115	124	9	9		
UB-2	R-6	65	-50.4	SANDSTONE	EMPIRE						117	466	24	-		
UB-2	R-7	72	-57.4	SANDSTONE	EMPIRE						123	632	31		42.3	0.4
UB-3	S-2	10	4.6	SAND	N/A	6.6	93.4	0.0								
UB-3	S-4	20	-5.4	SAND	N/A	5.2	94.8	0.0								
UB-3	R-1	30.3	-13.4	SANDSTONE	EMPIRE								11			0.4
UB-3	R-2	35	-18.1	SANDSTONE	EMPIRE								12	15	0.0	
UB-3	R-2	35.5	-18.6	SANDSTONE	EMPIRE						111	312				
UB-3	R-3	40	-23.1	SANDSTONE	EMPIRE						111	246	12			
UB-3	R-3	51	-34.1	SANDSTONE	EMPIRE								13			
UB-3	R-6	55	-38.1	SANDSTONE	EMPIRE						118	326	16			
UB-3	R-7	62	-45.1	SANDSTONE	EMPIRE						112	91	21			
UB-3	R-8	66	-49.1	SANDSTONE	EMPIRE						111	23	12			

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
	ORGANIC SILTS AND ORGANIC SILTY
OL	CLAYS OF LOW PLASTICITY
	INORGANIC CLAYEY SILTS TO VERY FINE
ML	SANDS OF SLIGHT PLASTICITY
	INORGANIC CLAYS OF LOW TO MEDIUM
CL	PLASTICITY

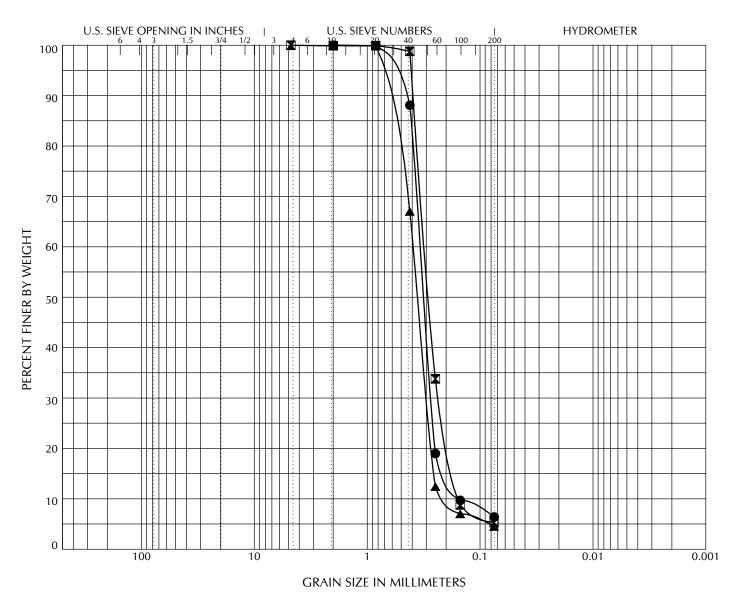
GROUP	UNIFIED SOIL CLASSIFICATION
SYMBOL	FINE-GRAINED SOIL GROUPS
	ORGANIC CLAYS OF MEDIUM TO HIGH
ОН	PLASTICITY, ORGANIC SILTS
МН	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY


	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
	B-2	S-7	35.0	Clayey SILT, trace fine-grained sand, gray	93	53	40	71

ATTERBERG-PLASTICITY 1 PER PAGE GRI DATA TEMPLATE.GDT 4/1/20

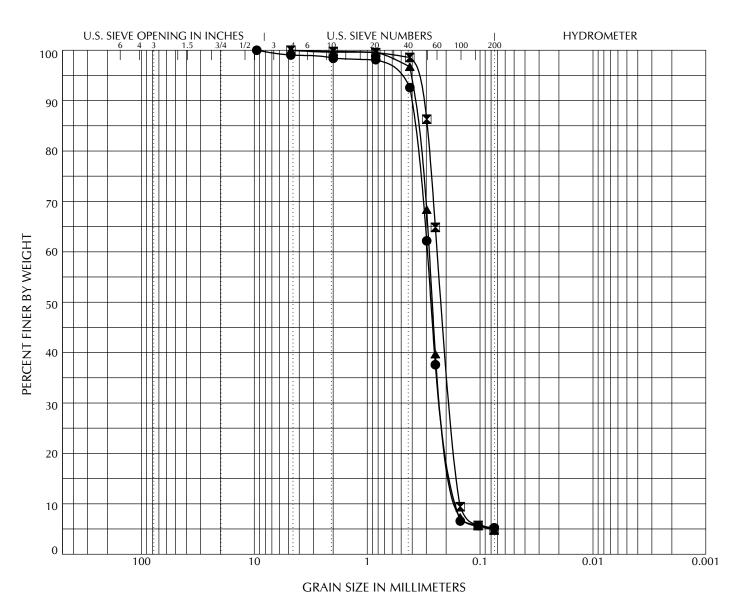
2020 JOB NO. 5128 FIG. 1B

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
МН	INORGANIC SILTS AND CLAYEY SILT
СН	INORGANIC CLAYS OF HIGH PLASTICITY



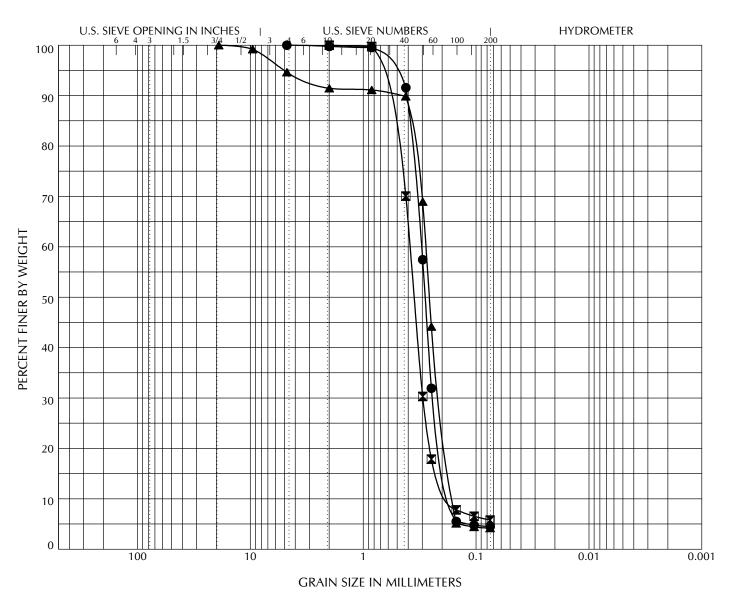
	Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
•	B-4-23	R-2	31.3	MUDSTONE/SILTSTONE, gray, fresh, extremely soft to very soft (R0-R1)	53	35	17	
X	B-7-23	S-8	40.0	CLAY, trace silt, trace fine- to medium-grained sand, dark brown	76	31	45	59
•	B-8-23	S-8	40.0	MUDSTONE/SILTSTONE, dark gray, fresh, extremely soft to very soft (R0-R1)	54	24	30	22
*	B-11-23	S-5	25.0	MUDSTONE/SILTSTONE, gray to light gray, very soft to soft (R1 to R2)	51	33	18	28
•	B-13-23	S-1	0.0	MUDSTONE/SILTSTONE, dark gray, fresh, extremely soft to very soft (R0-R1)	40	26	14	25

PLASTICITY CHART



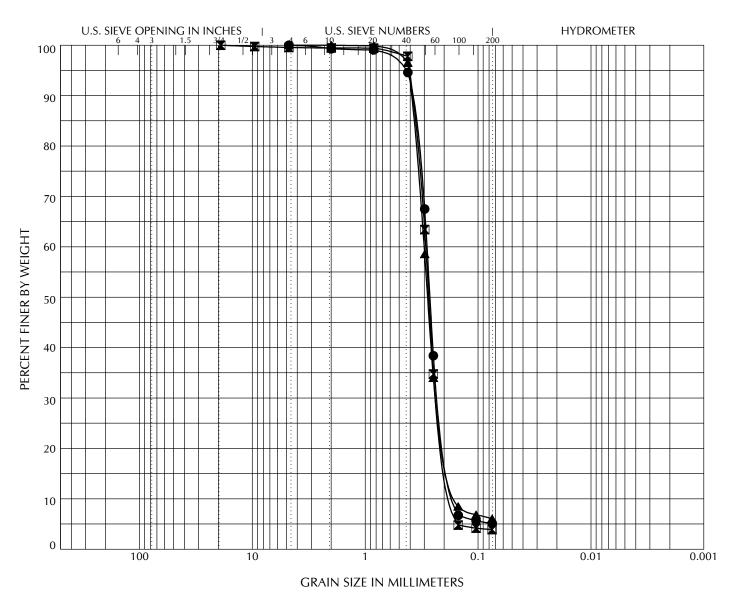
CODDIEC	GRA	AVEL		SAND		SILT OP CLAV
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

	Location Sample Depth, ft		Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
	B-2	S-4	20.0	SAND, some silt, brown to gray, fine to medium grained, contains scattered organics	0.0	93.6	6.4
	B-4A	S-2	10.0	SAND, trace to some silt, brown to gray, fine grained, contains scattered shell fragments	0.0	94.7	5.3
4	B-9	S-1	5.0	SAND, trace silt, brown, fine to medium grained	0.0	95.5	4.5


CORRIEC	GRA	VEL	SAND			SILT OR CLAY
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

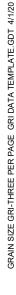
Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
B-10	S-1	3.0	SAND, trace to some silt, dark gray, fine to medium grained, contains shell fragments	1.0	93.8	5.2
B-10	S-6	15.0	SAND, trace silt, dark gray, fine grained, contains shell fragments	0.0	95.2	4.8
B-10	S-11	30.0	SAND, trace silt, dark gray, fine grained, contains shell fragments	0.0	95.2	4.8

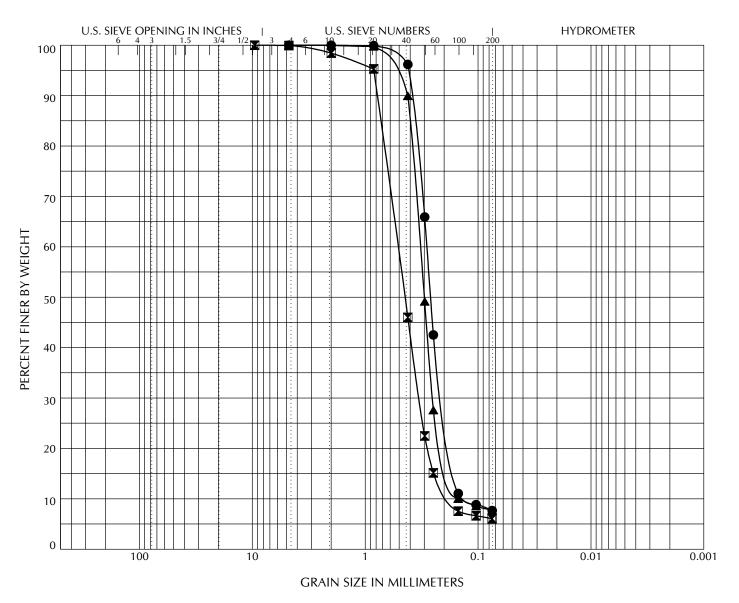
FIG. 4B


CORRIEC	GRA	VEL	SAND			SILT OR CLAY
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

		Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
		B-11	S-1	5.0	SAND, trace silt, gray, fine to medium grained	0.0	95.5	4.5
	×	B-11	S-3	15.0	SAND, trace to some silt, gray, fine to medium grained	0.0	94.2	5.8
4	•	B-12	S-1	5.0	SAND, trace silt and gravel-sized shell fragments, gray, fine grained	5.4	90.5	4.2

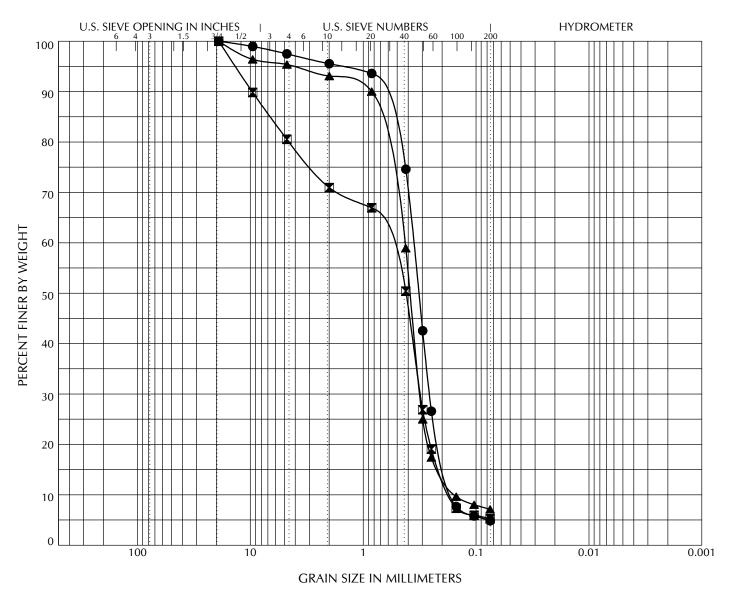
FIG. 5B





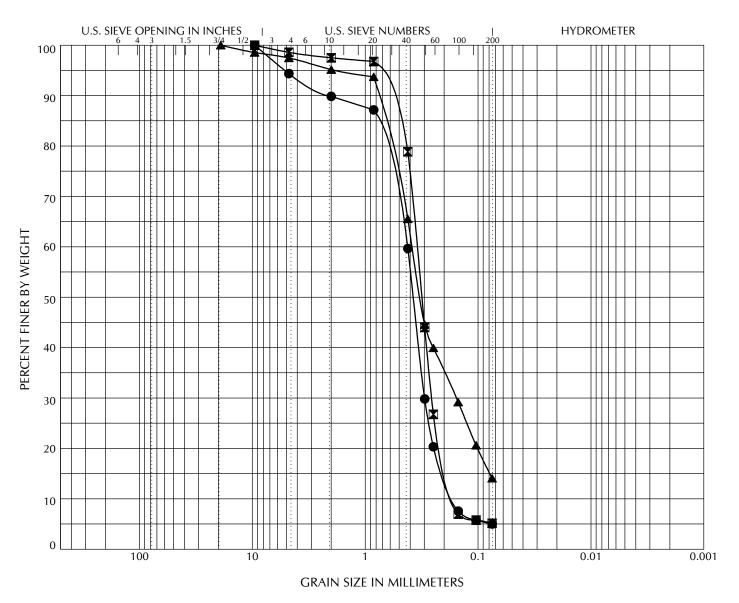
	COBBLES	GRA	VEL	SAND			SILT OR CLAY
		Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAT

	Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
	B-12	S-2	10.0	SAND, trace to some silt, gray, fine to medium grained	0.0	94.9	5.1
	B-13	S-1	5.0	SAND, trace silt, gray, fine grained, contains shell fragments	0.4	95.6	3.9
4	B-13	S-2	10.0	SAND, some silt, gray, fine grained	0.0	93.9	6.1



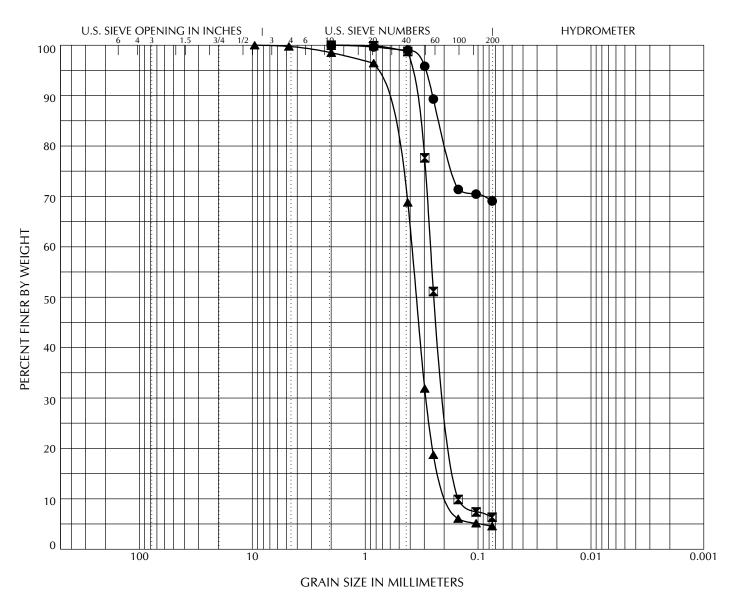
CODDIEC	GRA	AVEL		SAND		SILT OP CLAV
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

	Location	Location Sample Depth, ft Classification					Fines, %
	B-13	S-4	20.0	SAND, some silt, gray, fine grained	0.0	92.3	7.7
	B-14	S-1	5.0	SAND, some silt, gray, fine to medium grained, contains shell fragments	0.1	93.9	6.1
4	B-14	S-3	15.0	SAND, some silt, gray, fine to medium grained, contains shell fragments	0.0	92.2	7.8



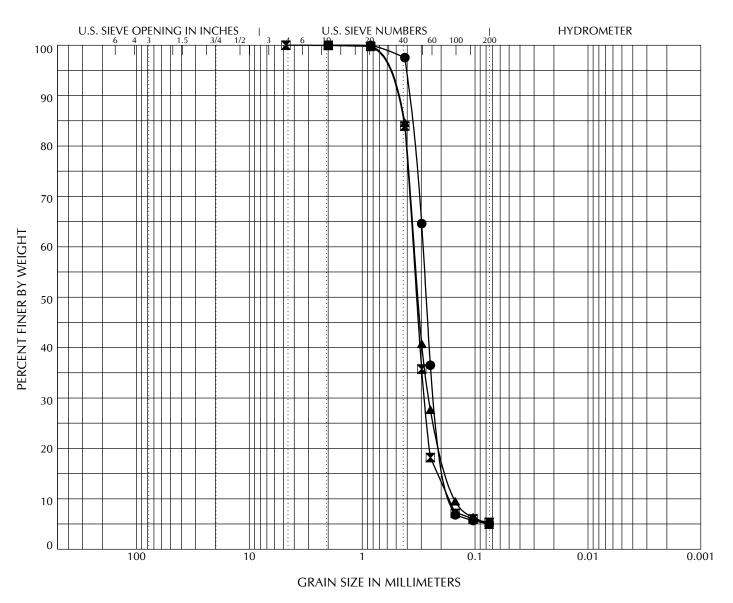
CODDIEC	GRA	AVEL		SAND		SILT OP CLAV
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

	Location Sample Depth, ft			Classification	Gravel, %	Sand, %	Fines, %
	B-17	S-1	4.0	SAND, trace silt, gray, fine to medium grained, contains gravel-sized shell fragments	2.5	92.6	4.9
	B-19	S-1	5.0	SAND, some gravel-sized shell fragments, trace to some silt, gray, fine to medium grained	19.5	75.3	5.2
4	B-19	S-2	10.0	SAND, some silt, gray, fine to medium grained, contains gravel-sized shell fragments	4.6	88.3	7.1


CODDIEC	GRA	AVEL		SAND		SILT OP CLAV
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

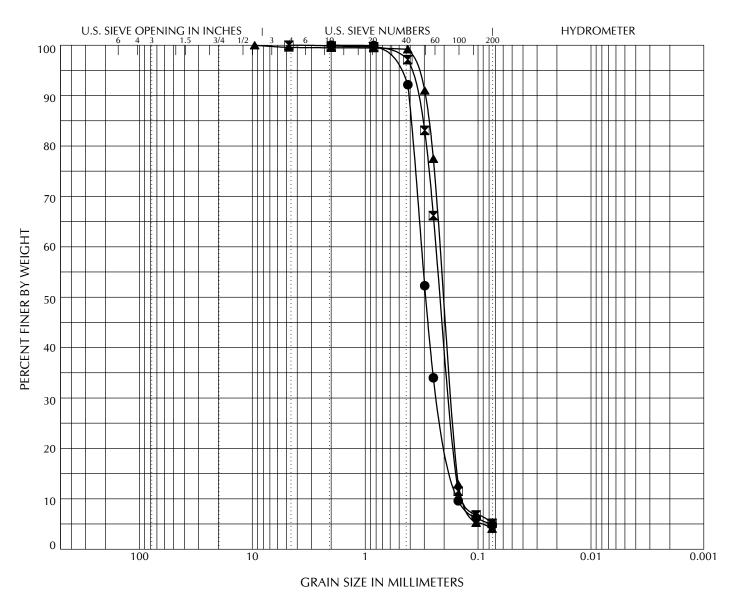
		Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
		B-20	S-1	5.0	SAND, trace to some silt, gray, fine to medium grained, contains shell fragments	5.6	89.4	5.0
	X	B-30	S-1	3.0	SAND, trace to some silt, gray, fine grained, contains shell fragments	1.4	93.4	5.2
4	•	B-30	S-3	8.0	Silty SAND, gray, fine to medium grained, contains shell fragments	2.5	83.4	14.1

FIG. 9B



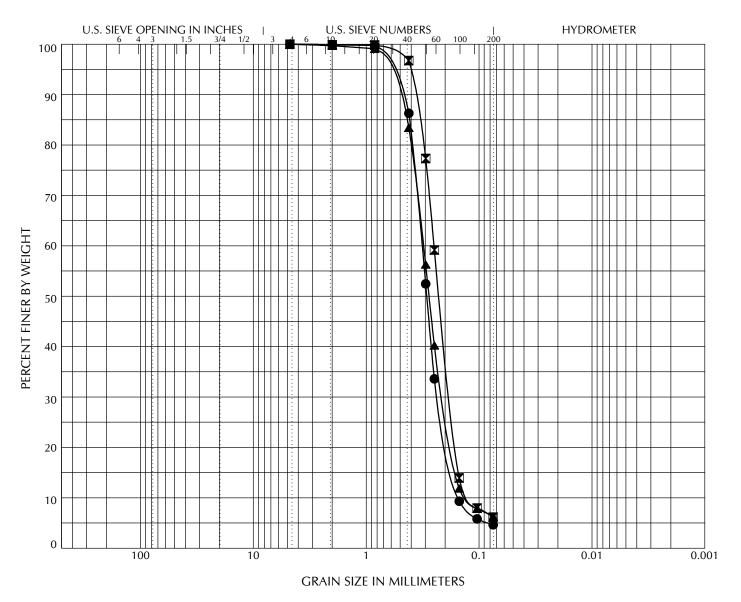
CORRIEC		VEL		SAND		CHT OR CLAY
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

	Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
•	B-37	S-1	3.0	Sandy SILT, gray, fine-grained sand	0.0	30.9	69.1
X	B-37	S-3	7.5	SAND, some silt, dark gray, fine grained	0.0	93.7	6.3
	B-38	S-1	5.0	SAND, trace silt, gray, fine to medium grained, contains shell fragments	0.2	95.2	4.6



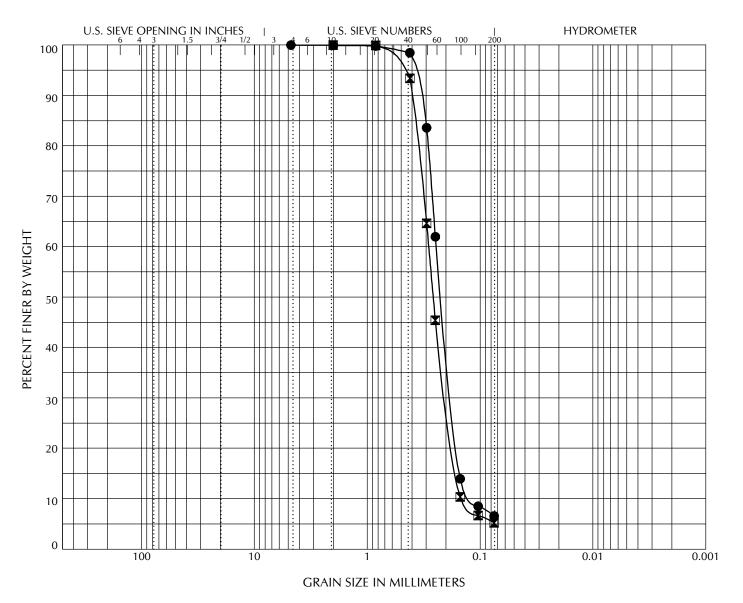
[GRA	VFI		SAND	,	
	COBBLES	OIV.	VV L L		3/ ((\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		SILT OR CLAY
		Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

	Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
•	B-38	S-2	<i>7</i> .5	SAND, trace to some silt, gray, fine grained	0.0	94.9	5.1
×	B-38	S-4	12.5	SAND, trace to some silt, gray, fine to medium grained	0.0	94.7	5.3
•	UB-1	S-3	15.0	SAND, trace silt, brown, fine to medium grained	0.0	95.1	4.9


CORRIEC		VEL		SAND		CHT OR CLAY
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

		Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
	•	UB-1	S-6	30.0	SAND, trace silt, brown, fine to medium grained	0.0	95.2	4.8
	×	UB-1	S-8	40.0	SAND, trace silt, gray, fine grained, contains shell fragments	0.0	94.8	5.2
4	•	UB-2	S-1	5.0	SAND, trace silt, brown, fine grained	0.4	95.5	4.1

FIG. 12B


		VEL		SAND)	CUT OR CLAY
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

	Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
	UB-2	S-3	15.0	SAND, trace silt, brown, fine to medium grained	0.0	95.4	4.6
	UB-2	S-5	25.0	SAND, some silt, gray, fine grained, contains shell fragments	0.0	93.9	6.1
4	UB-2	S-7	35.0	SAND, some silt, gray, fine to medium grained, contains shell fragments	0.0	93.7	6.3

FIG. 13B

CORRIES	I GK∕ª	VEL		SAND		SUTOPCIAV
CORRIES	Coarse	Fine	Coarse	Medium	Fine	SILT OR CLAY

Location	Sample	Depth, ft	Classification	Gravel, %	Sand, %	Fines, %
UB-3	S-2	10.0	SAND, some silt, brown, fine grained	0.0	93.4	6.6
UB-3	S-4	20.0	SAND, trace to some silt, gray, fine to medium grained	0.0	94.8	5.2

GP1 #5128

ACS Testing, Inc. 7409 SW Tech Center Dr Ste 145 Tigard, OR 97223 PH: 503-443-3799 F: 503-620-2748

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION:

MATERIAL:

Rock Core

SAMPLE SOURCE: Run 2 @ 16.0 TO 17.0

SAMPLE PREP:

JOB NO:

10-2830 WORK ORDER NO: 5128

LAB NO:

5310-3

DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

DIAMETER:

HEIGHT:

2.38 in 5.81 in MAXIMUM STRESS: AT STRAIN:

715 psi 1.38%

STRAIN RATE: DRY DENSITY: MOISTURE:

.006 inches/min. 116.8 lb/cu.ft

16.7%

800 700 600 500 Stress (psi) 400 300 200 100 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Strain (in)

Note:

REVIEWED BY

DOUG ESQUÍVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION: MATERIAL: Site Rock Core

SAMPLE SOURCE: Run 4 @ 26.0 to 27.0

SAMPLE PREP:

B-46

JOB NO:

10-2830

WORK ORDER NO: 5128 LAB NO:

5310-7

DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

DIAMETER: HEIGHT:

2.39 in 5.88 in MAXIMUM STRESS: AT STRAIN:


401 psi 0.77%

STRAIN RATE: DRY DENSITY:

.006 inches/min. 114.9 lb/cu.ft

MOISTURE:

17.0%

Note:

REVIEWED BY

DOUG ESQUIVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION:

Site

MATERIAL: **SAMPLE SOURCE:** Run 6 @ 36.5 to 37.5

Rock Core

SAMPLE PREP:

B-46

JOB NO:

10-2830

WORK ORDER NO: 5128

5310-9

LAB NO: DATE SAMPLED:

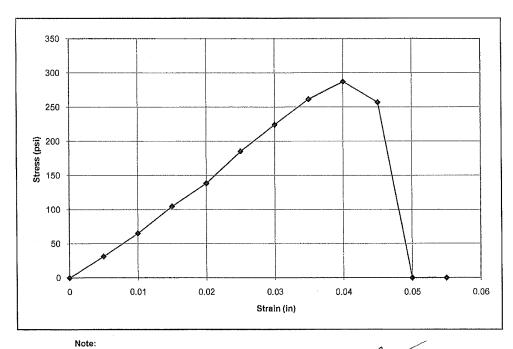
UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

DIAMETER:

HEIGHT:

2.38 in 5.69 in MAXIMUM STRESS: AT STRAIN:

287 psi 0.70%


STRAIN RATE:

.006 inches/min.

DRY DENSITY: MOISTURE:

115,2 lb/cu.ft

17.3%

REVIEWED BY

DOUG ESQUIVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION: MATERIAL: Site

Rock Core

SAMPLE SOURCE: B-7a Run 9 @ 3'-10" to 4'-8"

SAMPLE PREP:

RUN Z

JOB NO:

10-2830

WORK ORDER NO: 5128 LAB NO:

5310-1

DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

DIAMETER: HEIGHT:

2.38 in

MAXIMUM STRESS: AT STRAIN:

633 psi 1.20%

STRAIN RATE:

5.82 in

DRY DENSITY:

.006 inches/min. 111.2 lb/cu.ft

MOISTURE:

18.5%

700 600 500 400 Stress (psi) 300 200 100 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Strain (in) Note:

REVIEWED BY

DOUG ESQUIVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION:

Site

Rock Core

MATERIAL:

SAMPLE SOURCE: Run 3 @ 7.0 TO 8.0

SAMPLE PREP:

JOB NO:

10-2830

WORK ORDER NO: 5128 5310-4

LAB NO:

DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

DIAMETER: HEIGHT:

2.38 in

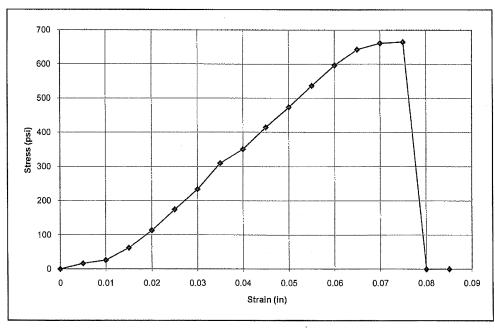
MAXIMUM STRESS:

AT STRAIN:

665 psi

1.29%

STRAIN RATE:


5.81 in

.006 inches/min.

DRY DENSITY: MOISTURE:

110.3 lb/cu.ft

18.6%

Note:

REVIEWED BY DOUG ESQUIVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION: MATERIAL: Site

Rock Core

SAMPLE SOURCE: Run 4 @ 12'-12'10"

SAMPLE PREP:

B-7a

JOB NO: 10-2830 WORK ORDER NO: 5128

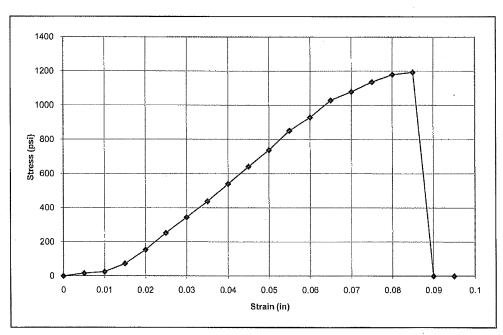
5310-6

LAB NO: DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

DIAMETER: HEIGHT:

2.36 in MAXIMUM STRESS: 5.78 in AT STRAIN:


1,193 psi 1.47%

STRAIN RATE:

.006 inches/min.

DRY DENSITY: MOISTURE: 108.8 lb/cu.ft

18.8%

Note:

REVIEWED BY

DOUG ESQUIVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION:

Site

MATERIAL: Rock Core SAMPLE SOURCE: Run 2 @ 7.0 TO 8.0

SAMPLE PREP:

JOB NO:

10-2830

WORK ORDER NO: 5128 LAB NO:

5310-2

DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

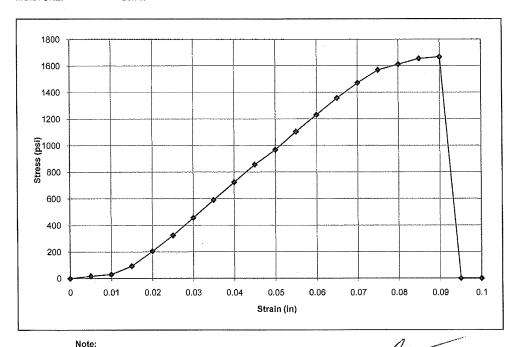
DIAMETER:

2.38 in

MAXIMUM STRESS:

AT STRAIN:

1,668 psi 1.54%


HEIGHT: STRAIN RATE:

5.83 in .006 inches/min.

DRY DENSITY:

102.7 lb/cu.ft

MOISTURE: 23.7%

REVIEWED BY DOUG ESQUIVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION:

Site

MATERIAL:

Rock Core **SAMPLE SOURCE:** Run 3 @ 14.5 TO 15.5

SAMPLE PREP:

B-76

JOB NO:

10-2830

WORK ORDER NO: 5128 LAB NO:

5310-5

DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

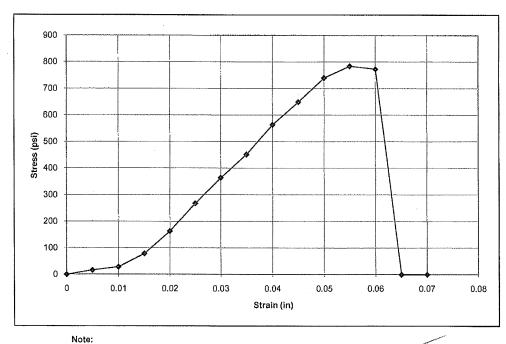
DIAMETER:

HEIGHT:

2,38 in

MAXIMUM STRESS: AT STRAIN:

784 psi 1.00%


STRAIN RATE:

5.51 in .006 inches/min.

DRY DENSITY: MOISTURE:

106.0 lb/cu.ft

21.9%

REVIEWED BY DOUG ESQUIVEL, VP OPERATIONS

GRI Geotechnical & Environmental Consulting 9725 SW Beaverton Hillsdale Hwy Beaverton OR 97005

PROJECT:

Coos Bay Channel Modifications

LOCATION: MATERIAL:

Site

Rock Core **SAMPLE SOURCE:** Run 5 @ 22.5 to 23.5

SAMPLE PREP:

JOB NO:

10-2830

WORK ORDER NO: 5128 5310-8

LAB NO:

DATE SAMPLED:

UNCONFINED COMPRESSION STRENGTH OF Rock Cores APPLICABLE PORTIONS OF (ASTM D7012)

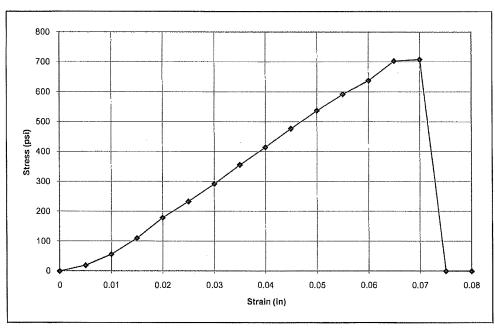
DIAMETER:

2.38 in

MAXIMUM STRESS:

AT STRAIN:

708 psi 1.24%


HEIGHT: STRAIN RATE: 5.63 in

.006 inches/min.

DRY DENSITY: MOISTURE:

111.2 lb/cu.ft

19.0%

Note:

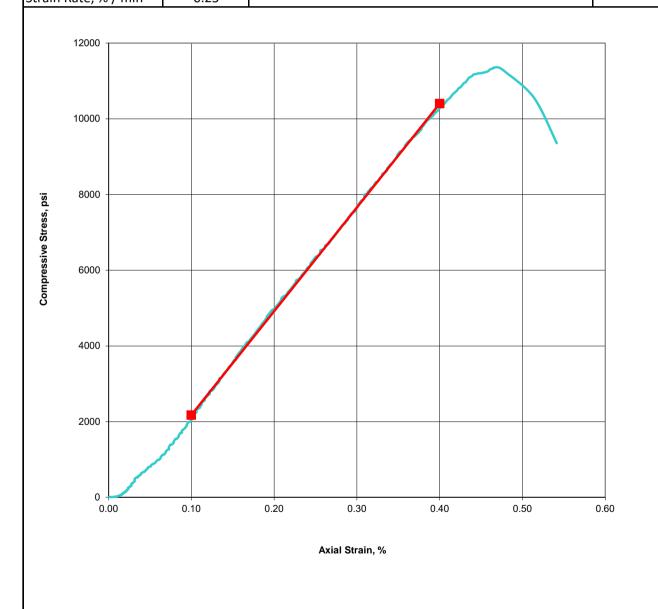
REVIEWED BY

DOUG ESQUIVEL, VP OPERATIONS

 CTL Job No.:
 823-008A1
 Boring:
 B-15
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 2 Checked: DC


Project No.: 5128

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

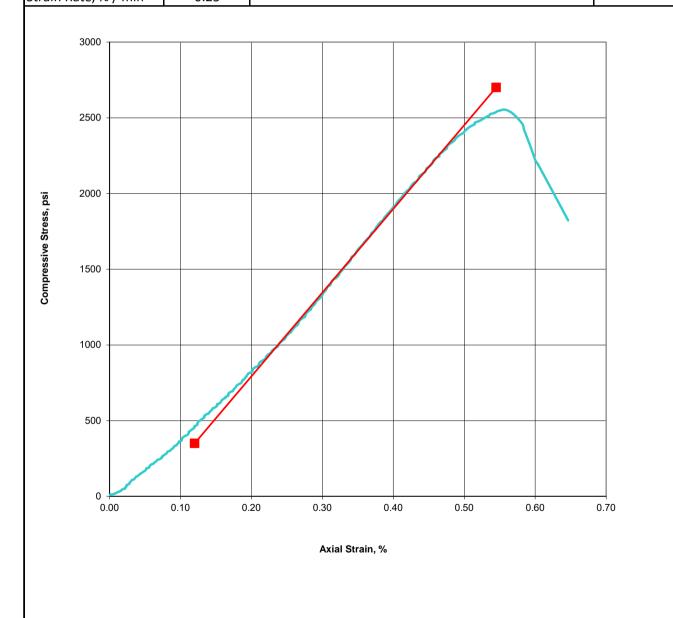
Test Temperature, (°C) Ambient

Sample Height, in.	5.08		
Sample Diameter, in.	2.40	Unconfined Compressive Strength	11361
Height / Diameter	2.1	(psi)	11301
Sample Area, in ²	4.53	(631)	
Wet Density, pcf	158.1		
Dry Density, pcf	149.4	Vound's Madulus (E) (noi)	2 744 700
Moisture Content, %	5.8	Young's Modulus (E) (psi)	2,741,700
Strain Rate, % / min	0.25	1	

 CTL Job No.:
 823-008A2
 Boring: B-15
 Date: 9/14/2016

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 5.5 Checked: DC


Project No.: 5128

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.01		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	2554
Height / Diameter	2.1	(psi)	2554
Sample Area, in ²	4.36	(631)	
Wet Density, pcf	143.7		
Dry Density, pcf	126.6	Vound's Madulus (E) (noi)	EE2 000
Moisture Content, %	13.5	Young's Modulus (E) (psi)	552,900
Strain Rate, % / min	0.25	1	

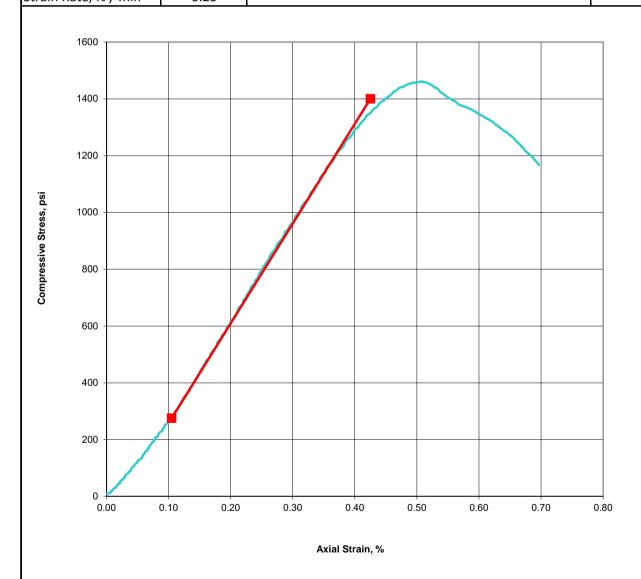
 CTL Job No.:
 823-008A3
 Boring:
 B-15
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel

Modification Project Depth ft : 0

Modification Project Depth,ft.: 9.5 Checked: DC


Project No.: 5128

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	4.99		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	1461
Height / Diameter	2.1	(psi)	1401
Sample Area, in ²	4.49	(psi)	
Wet Density, pcf	141.9		
Dry Density, pcf	131.2	Vound's Madulus (E) (noi)	254 600
Moisture Content, %	8.1	Young's Modulus (E) (psi)	351,600
Strain Rate, % / min	0.25		

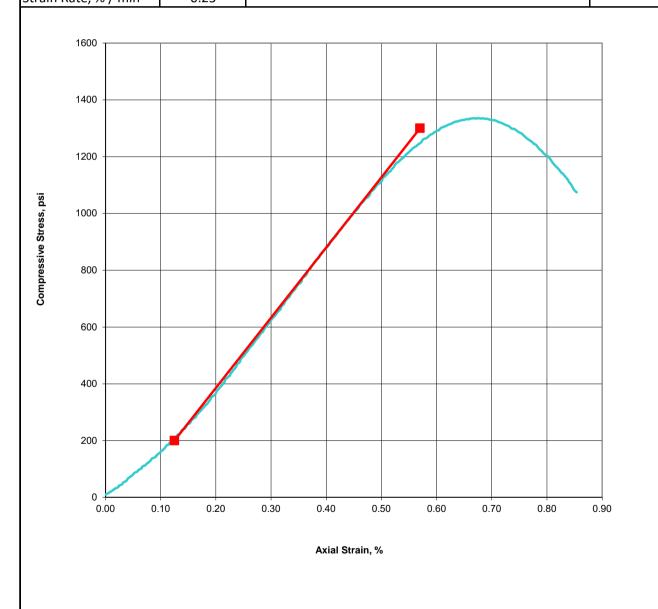
 CTL Job No.:
 823-008A4
 Boring:
 B-15
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel

Modification Project Depth for

Modification Project Depth,ft.: 15.5 Checked: DC


Project No.: 5128

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

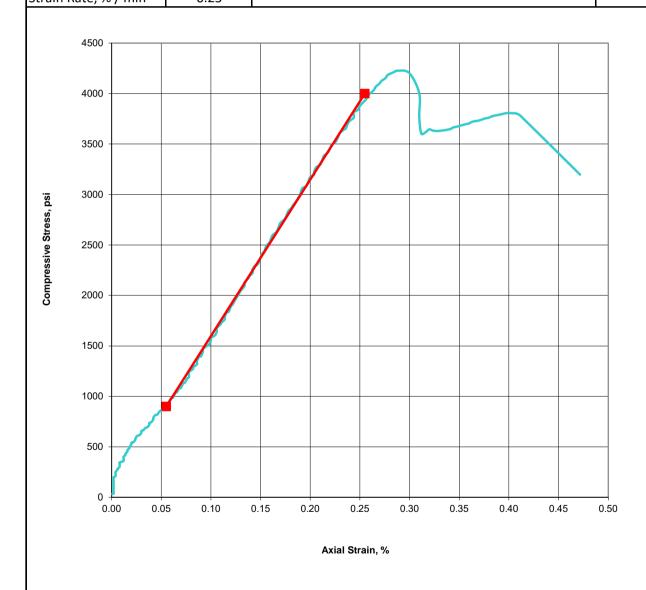
Test Temperature, (°C) Ambient

Sample Height, in.	5.01		
Sample Diameter, in.	2.38	Unconfined Compressive Strength	1335
Height / Diameter	2.1	(psi)	1333
Sample Area, in ²	4.45	(631)	
Wet Density, pcf	139.2		
Dry Density, pcf	124.1	Voundo Modulus (E) (noi)	247 200
Moisture Content, %	12.1	Young's Modulus (E) (psi)	247,200
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008A5
 Boring:
 B-15
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 18.5 Checked: DC


Project No.: 5128

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

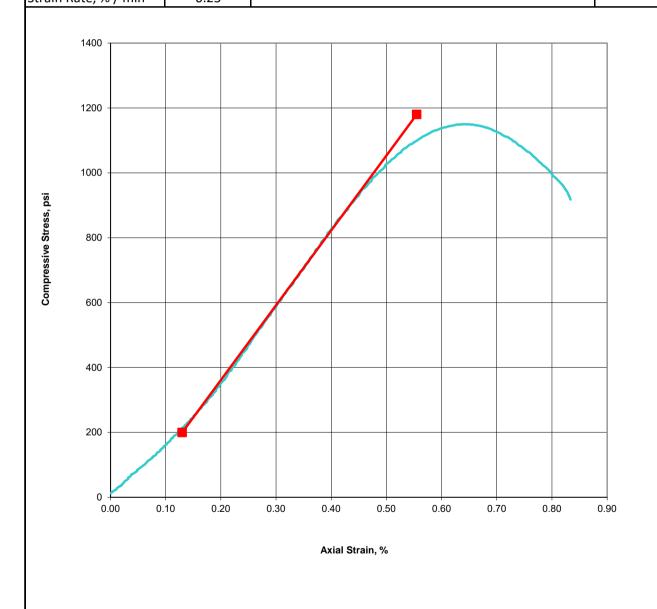
Test Temperature, (°C) Ambient

Sample Height, in.	5.00		
Sample Diameter, in.	2.40	Unconfined Compressive Strength	4226
Height / Diameter	2.1	(psi)	4220
Sample Area, in ²	4.51	(631)	
Wet Density, pcf	155.1		
Dry Density, pcf	143.6	Vound's Madulus (E) (noi)	4 550 000
Moisture Content, %	8.0	Young's Modulus (E) (psi)	1,550,000
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008A6
 Boring: B-15
 Date: 9/14/2016

 Client:
 GRI
 Sample: R-5
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 22.5 Checked: DC


Project No.: 5128

Visual Description: Dark Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

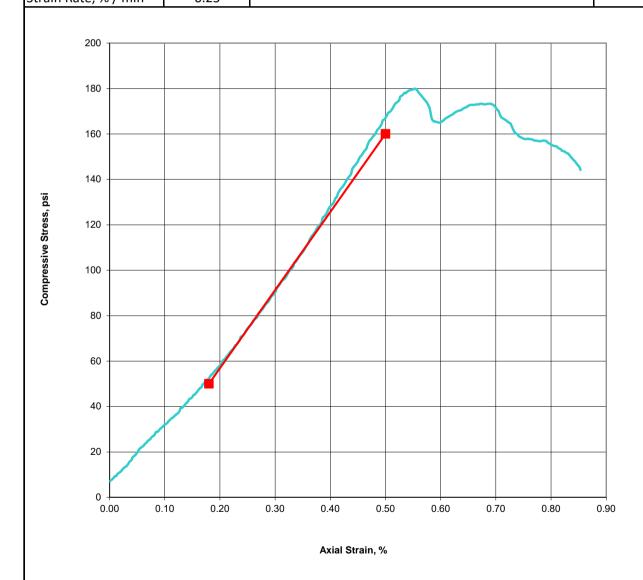
Sample Height, in.	4.98		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	1150
Height / Diameter	2.1	(psi)	1130
Sample Area, in ²	4.48	(631)	
Wet Density, pcf	139.1		
Dry Density, pcf	126.1	Voundo Modulus (E) (noi)	220 600
Moisture Content, %	10.3	Young's Modulus (E) (psi)	230,600
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008B4
 Boring:
 B-21
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-7
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 20.5 Checked: DC

Project No.: 5128


Visual Description: Very Dark Brown Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Remarks: Prior to testing, one corner of the sample was partially fractured.

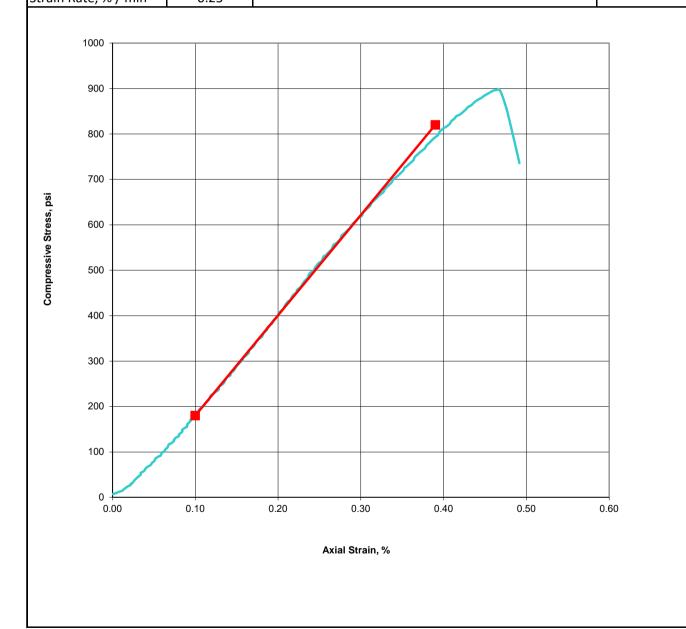
Sample Height, in.	5.05		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	180
Height / Diameter	2.1	(psi)	100
Sample Area, in ²	4.50	(psi)	
Wet Density, pcf	119.8		
Dry Density, pcf	93.7	Voundo Madulus (E) (noi)	24 400
Moisture Content, %	27.9	Young's Modulus (E) (psi)	34,400
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008D1
 Boring:
 B-23
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel

Modification Project Depth,ft.: 8.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Brown Rock

Moisture Condition at Test Sample was washed and in a moist state.

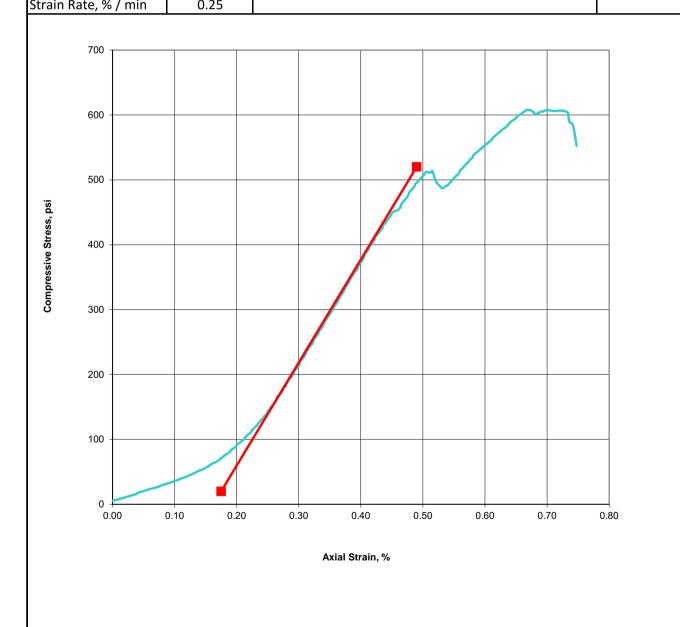
Test Temperature, (°C) Ambient

Sample Height, in.	4.98		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	897
Height / Diameter	2.1	(psi)	097
Sample Area, in ²	4.39	(631)	
Wet Density, pcf	121.9		
Dry Density, pcf	98.5	Voundo Modulus (E) (noi)	220 700
Moisture Content, %	23.8	Young's Modulus (E) (psi)	220,700
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008D2
 Boring:
 B-23
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 9.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Brown Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.12		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	608
Height / Diameter	2.1	(psi)	000
Sample Area, in ²	4.49	(631)	
Wet Density, pcf	123.1		
Dry Density, pcf	98.2	Youngle Medulus (F) (noi)	450 700
Moisture Content, %	25.4	Young's Modulus (E) (psi)	158,700
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008D3
 Boring:
 B-23
 Date:
 9/14/2016

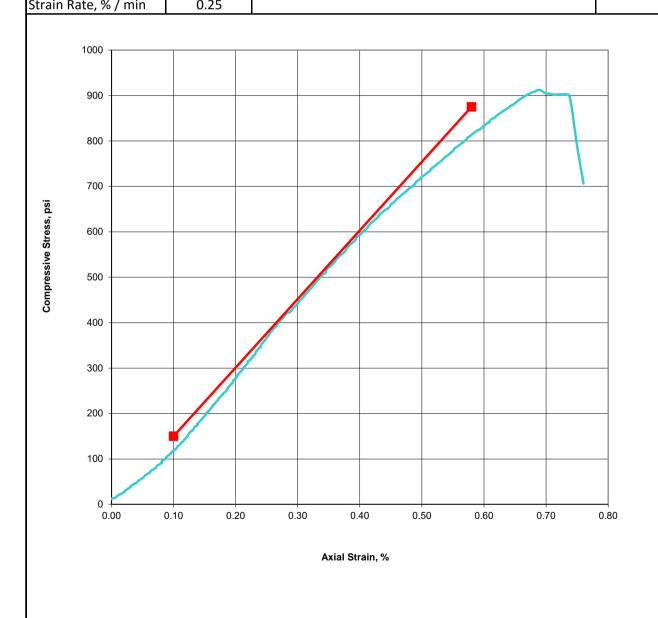
 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 11.5 Checked: DC

Project No.: 5128

Visual Description: Very Dark Brown Rock

Moisture Condition at Test Sample was washed and in a moist state.


Test Temperature, (°C) Ambient

Remarks: The surface of the sample developed fine fractures prior to

testing. These fractures appear to be the result of the sample

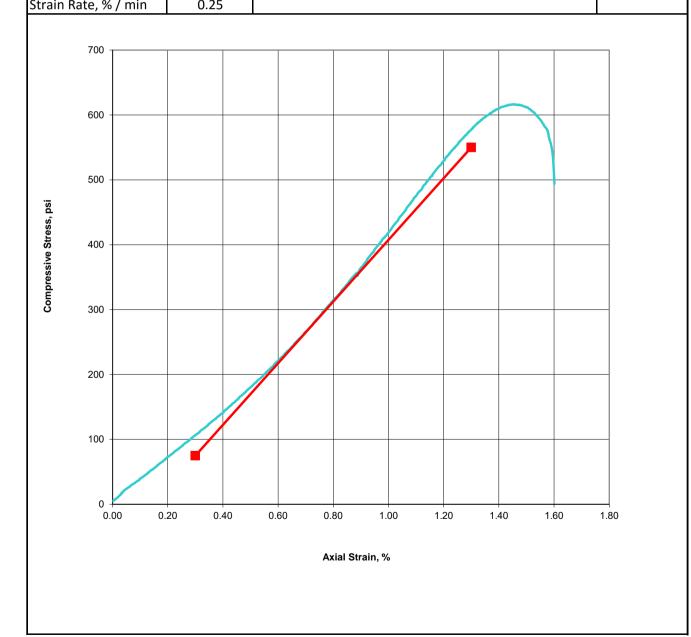
drying slightly during handling and preparation.

Sample Height, in.	5.19		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	912
Height / Diameter	2.2	(psi)	912
Sample Area, in ²	4.48	(psi)	
Wet Density, pcf	123.9		
Dry Density, pcf	97.7	Voundo Madulus (E) (noi)	151 000
Moisture Content, %	26.8	Young's Modulus (E) (psi)	151,000
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008E1
 Boring: B-24
 Date: 9/14/2016

 Client:
 GRI
 Sample: R-1
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 4 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

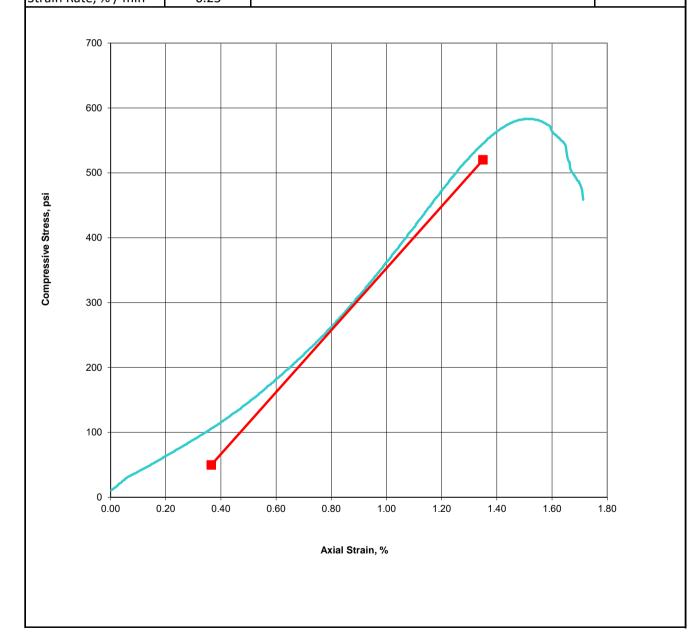
Test Temperature, (°C) Ambient

Sample Height, in.	4.91		
Sample Diameter, in.	2.40	Unconfined Compressive Strength	616
Height / Diameter	2.0	(psi)	010
Sample Area, in ²	4.53	(psi)	
Wet Density, pcf	137.0		
Dry Density, pcf	118.0	Voundo Madulus (E) (noi)	47 E00
Moisture Content, %	16.1	Young's Modulus (E) (psi)	47,500
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008E2
 Boring: B-24
 Date: 9/14/2016

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 6 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

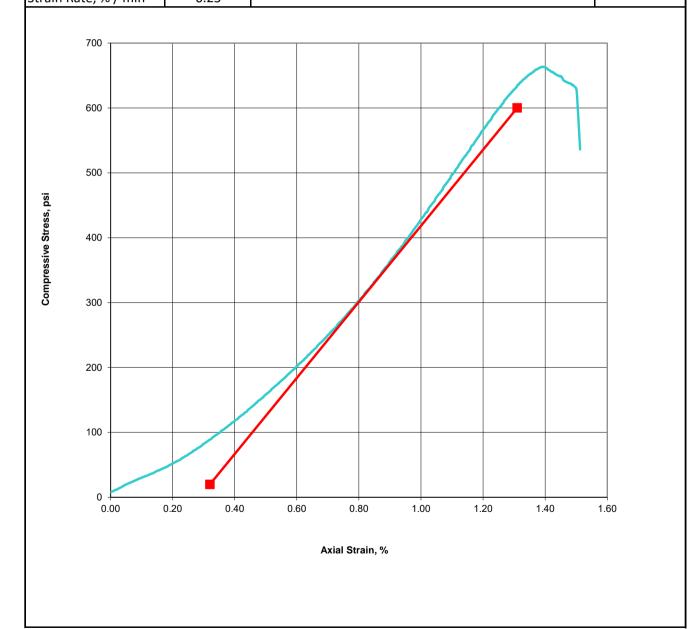
Test Temperature, (°C) Ambient

Sample Height, in.	5.06		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	E02
Height / Diameter	2.1	(psi)	583
Sample Area, in ²	4.39	(psi)	
Wet Density, pcf	137.6		
Dry Density, pcf	118.6	Vound's Madulus (E) (noi)	47 700
Moisture Content, %	16.1	Young's Modulus (E) (psi)	47,700
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008E3
 Boring: B-24
 Date: 9/14/2016

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 8 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

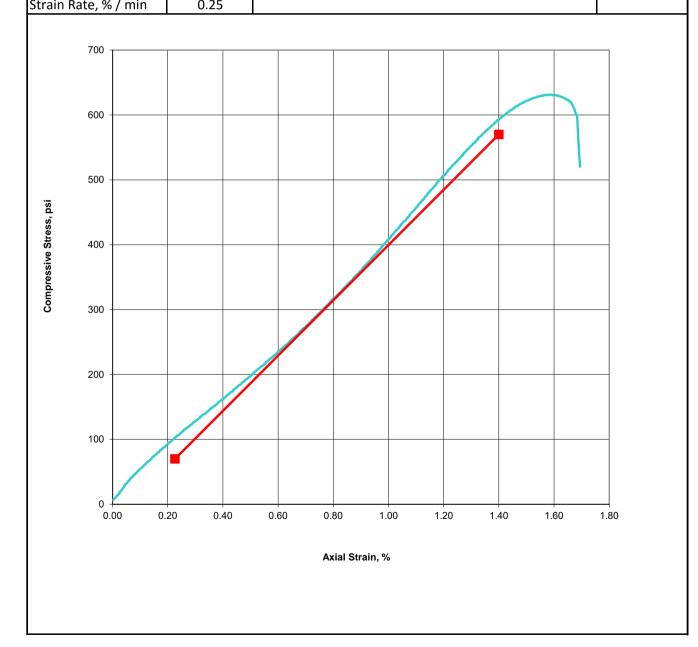
Test Temperature, (°C) Ambient

Sample Height, in.	5.00		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	663
Height / Diameter	2.1	(psi)	003
Sample Area, in ²	4.50	(631)	
Wet Density, pcf	138.2		
Dry Density, pcf	119.8	Vound's Madulus (E) (noi)	E0 600
Moisture Content, %	15.3	Young's Modulus (E) (psi)	58,600
Strain Rate, % / min	0.25	1	

 CTL Job No.:
 823-008E4
 Boring:
 B-24
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 11 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

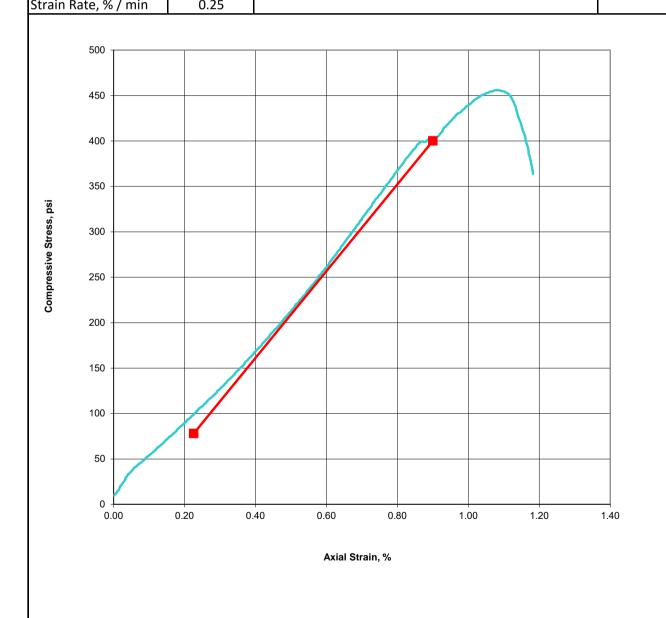
Test Temperature, (°C) Ambient

Sample Height, in.	5.04		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	631
Height / Diameter	2.1	(psi)	031
Sample Area, in ²	4.48	(psi)	
Wet Density, pcf	136.9		
Dry Density, pcf	119.1	Voundo Madulus (E) (noi)	42 600
Moisture Content, %	15.0	Young's Modulus (E) (psi)	42,600
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008E5
 Boring:
 B-24
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 15 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

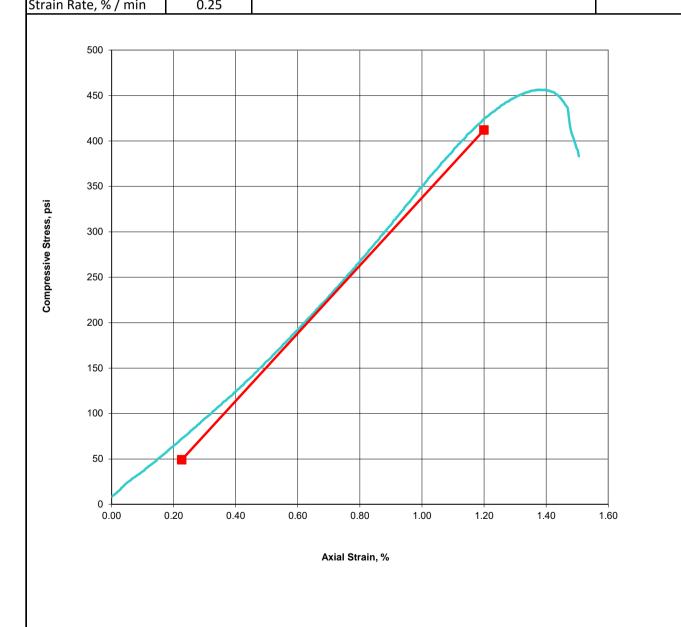
Test Temperature, (°C) Ambient

Sample Height, in.	5.10		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	456
Height / Diameter	2.1	(psi)	450
Sample Area, in ²	4.49	(631)	
Wet Density, pcf	138.9		
Dry Density, pcf	121.4	Voundle Medulus (E) (noi)	47 000
Moisture Content, %	14.4	Young's Modulus (E) (psi)	47,800
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008E6
 Boring: B-24
 Date: 9/14/2016

 Client:
 GRI
 Sample: R-4
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 17 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

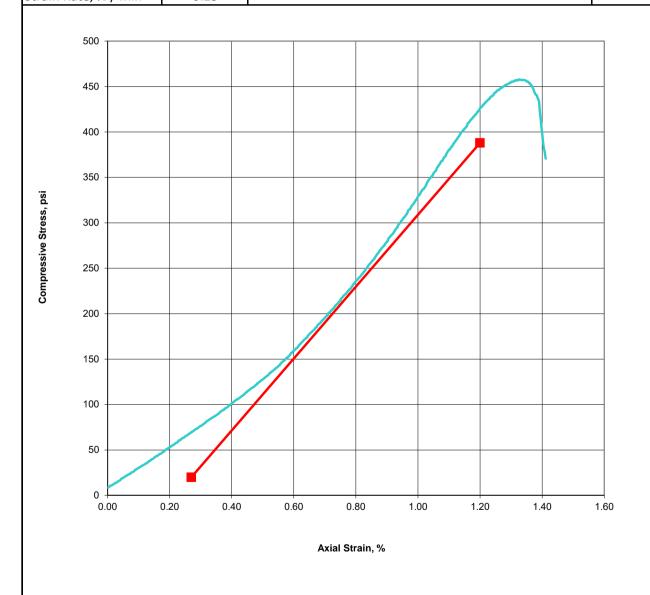
Sample Height, in.	5.07		
Sample Diameter, in.	2.41	Unconfined Compressive Strength	456
Height / Diameter	2.1	(psi)	430
Sample Area, in ²	4.54	(631)	
Wet Density, pcf	140.5		
Dry Density, pcf	123.9	Youngle Medulus (F) (noi)	27 200
Moisture Content, %	13.4	Young's Modulus (E) (psi)	37,300
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008E7
 Boring:
 B-24
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 18.25 Checked: DC

Project No.: 5128


Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

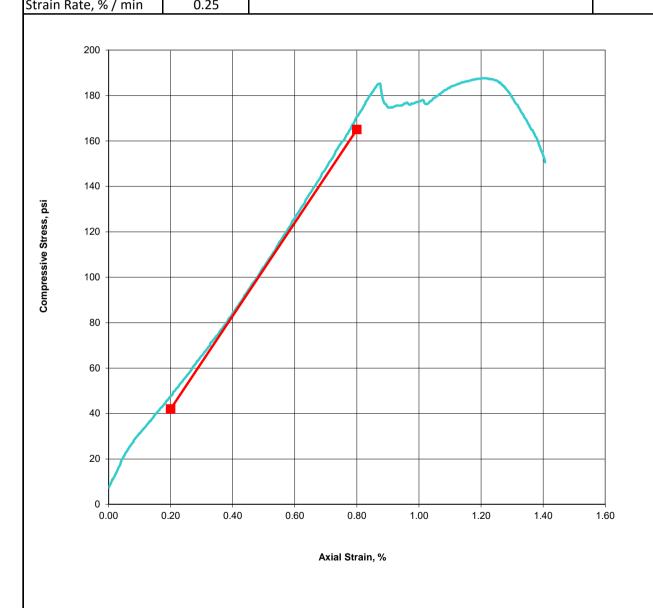
Remarks: The sample had a small void on one side.

Sample Height, in. Sample Diameter, in. Height / Diameter Sample Area, in ²	5.09 2.40 2.1 4.52	Unconfined Compressive Strength (psi)	458
Wet Density, pcf Dry Density, pcf	140.1 124.1		
Moisture Content, % Strain Rate, % / min	12.9 0.25	Young's Modulus (E) (psi)	39,600

 CTL Job No.:
 823-008E8
 Boring:
 B-24
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 21.75 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

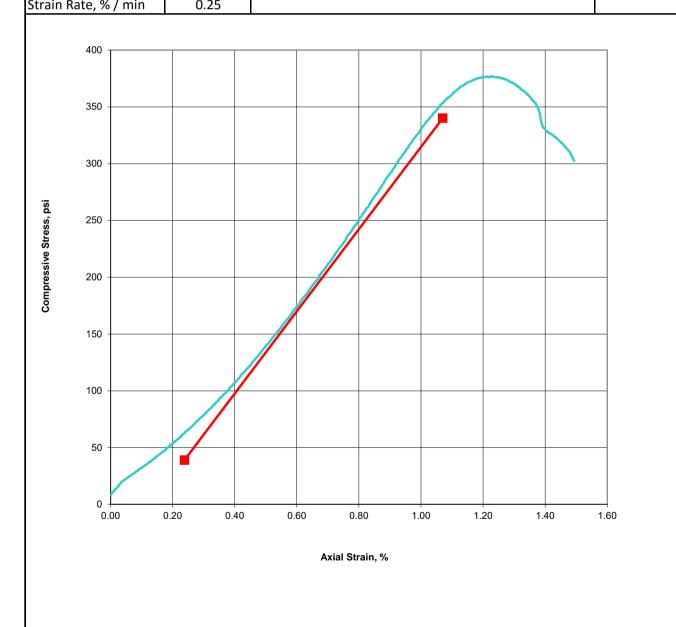
Sample Height, in.	5.08		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	188
Height / Diameter	2.1	(psi)	100
Sample Area, in ²	4.49	(psi)	
Wet Density, pcf	139.3		
Dry Density, pcf	126.4	Voundo Madulus (E) (noi)	20 500
Moisture Content, %	10.2	Young's Modulus (E) (psi)	20,500
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008E9
 Boring:
 B-24
 Date:
 9/14/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 24 Checked: DC

Project No.: 5128


Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

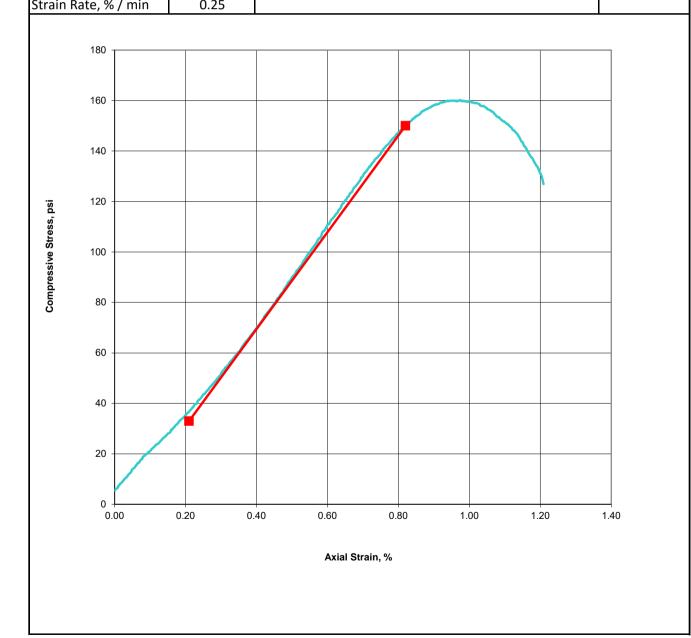
Remarks: .

Sample Height, in.	5.07		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	377
Height / Diameter	2.1	(psi)	3//
Sample Area, in ²	4.47	(631)	
Wet Density, pcf	137.6		
Dry Density, pcf	119.6	Voundo Madulus (E) (noi)	26 200
Moisture Content, %	15.1	Young's Modulus (E) (psi)	36,200
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008F1
 Boring:
 B-25
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 6.25 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

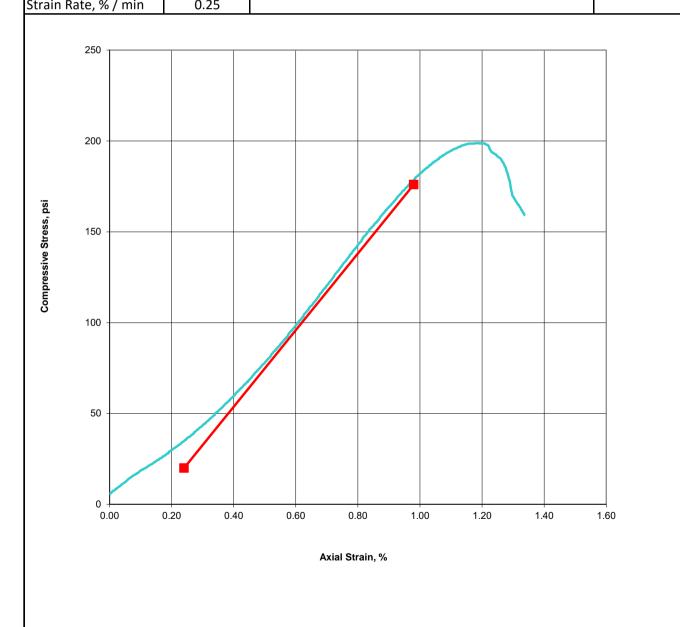
Test Temperature, (°C) Ambient

Sample Height, in. Sample Diameter, in. Height / Diameter Sample Area, in ²	5.09 2.34 2.2 4.30	Unconfined Compressive Strength (psi)	160
Wet Density, pcf Dry Density, pcf	129.5 109.4	Young's Modulus (E) (psi)	19,200
Moisture Content, % Strain Rate % / min	18.4	1 3 a.i.g 3 iii. 3 aai aa (E) (poi)	. 0,200

 CTL Job No.:
 823-008F2
 Boring:
 B-25
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 10.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

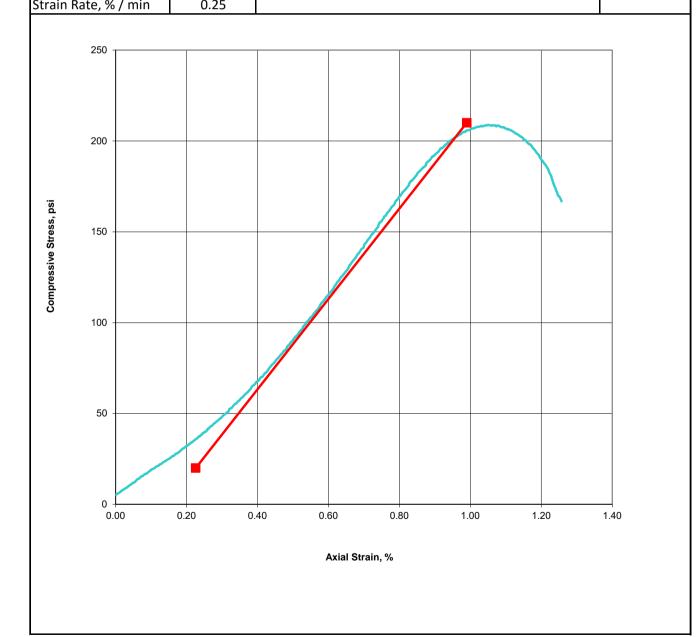
Test Temperature, (°C) Ambient

Sample Height, in.	5.19		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	199
Height / Diameter	2.2	(psi)	199
Sample Area, in ²	4.41	(psi)	
Wet Density, pcf	123.8		
Dry Density, pcf	103.8	Voundo Madulus (E) (noi)	24 400
Moisture Content, %	19.2	Young's Modulus (E) (psi)	21,100
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008F3
 Boring:
 B-25
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 15.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

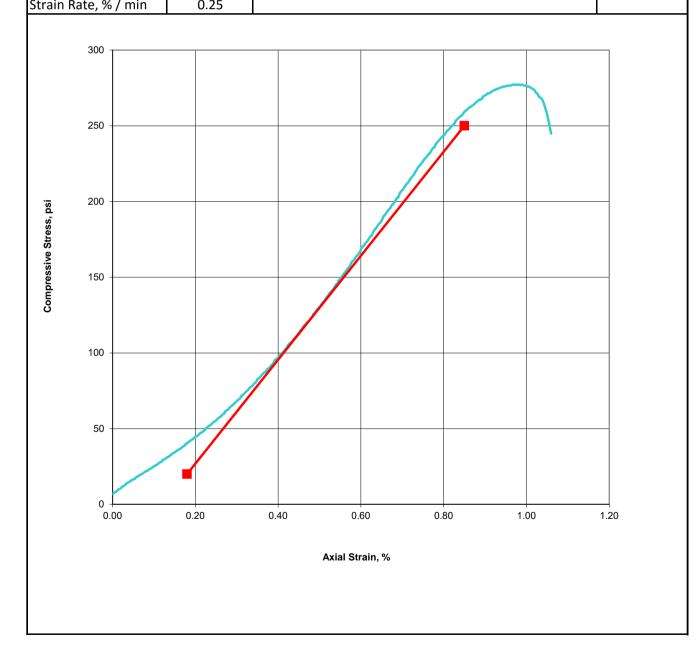
Test Temperature, (°C) Ambient

Sample Height, in.	5.11		
Sample Diameter, in.	2.32	Unconfined Compressive Strength	209
Height / Diameter	2.2	(psi)	209
Sample Area, in ²	4.22	(631)	
Wet Density, pcf	130.9		
Dry Density, pcf	109.8	Youngle Medulus (F) (noi)	24.000
Moisture Content, %	19.2	Young's Modulus (E) (psi)	24,900
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008F4
 Boring:
 B-25
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 17 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

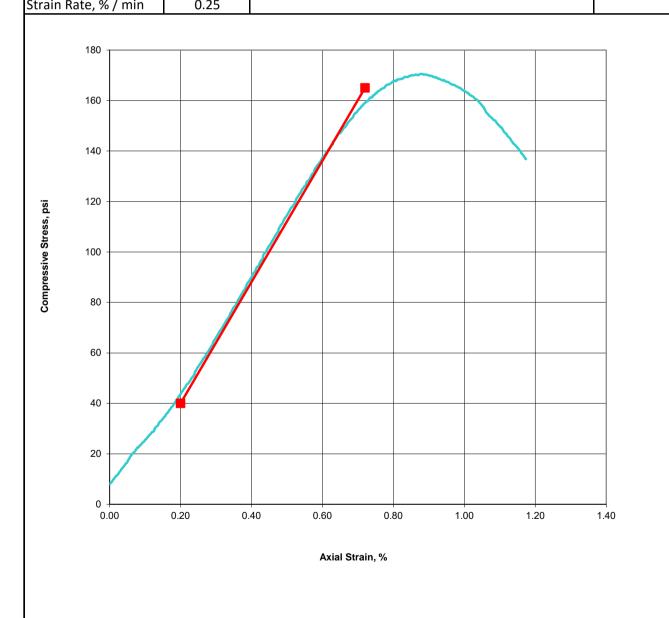
Test Temperature, (°C) Ambient

Sample Height, in.	5.03		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	277
Height / Diameter	2.1	(psi)	211
Sample Area, in ²	4.43	(631)	
Wet Density, pcf	128.2		
Dry Density, pcf	107.4	Voundle Medulus (E) (noi)	24 200
Moisture Content, %	19.4	Young's Modulus (E) (psi)	34,300
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008G2
 Boring:
 B-26
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 13 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

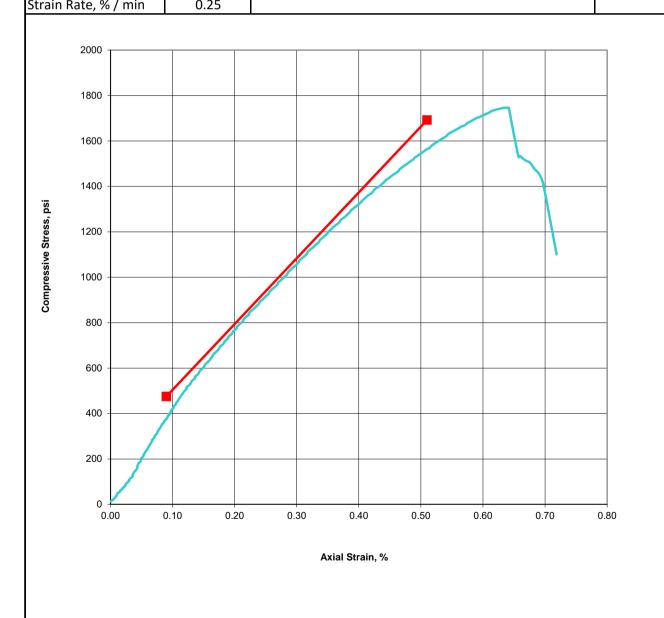
Test Temperature, (°C) Ambient

Sample Height, in.	5.05		
Sample Diameter, in.	2.32	Unconfined Compressive Strength	171
Height / Diameter	2.2	(psi)	171
Sample Area, in ²	4.21	(631)	
Wet Density, pcf	128.8		
Dry Density, pcf	106.6	Youngle Medulus (F) (noi)	24.000
Moisture Content, %	20.9	Young's Modulus (E) (psi)	24,000
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008H1
 Boring:
 B-27
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 4 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

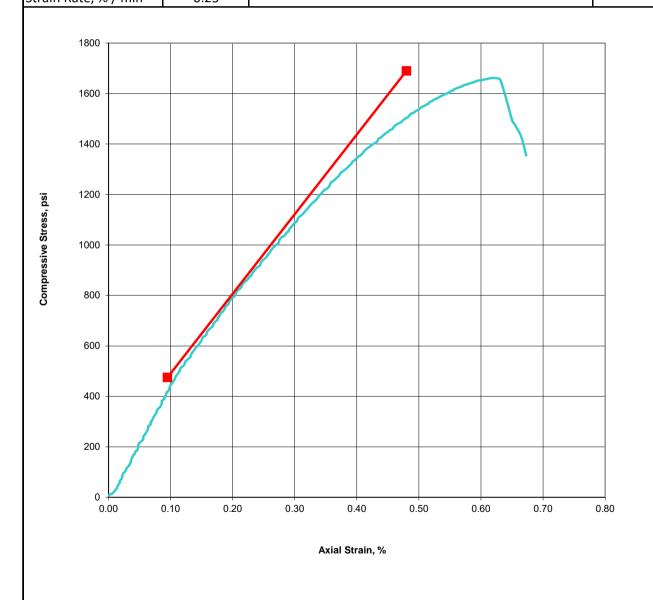
Test Temperature, (°C) Ambient

Sample Height, in.	5.07		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	1746
Height / Diameter	2.1	(psi)	1740
Sample Area, in ²	4.48	(631)	
Wet Density, pcf	121.6		
Dry Density, pcf	94.7	Vermale Medulus (F) (noi)	200 000
Moisture Content, %	28.4	Young's Modulus (E) (psi)	289,800
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008H2
 Boring:
 B-27
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 7 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

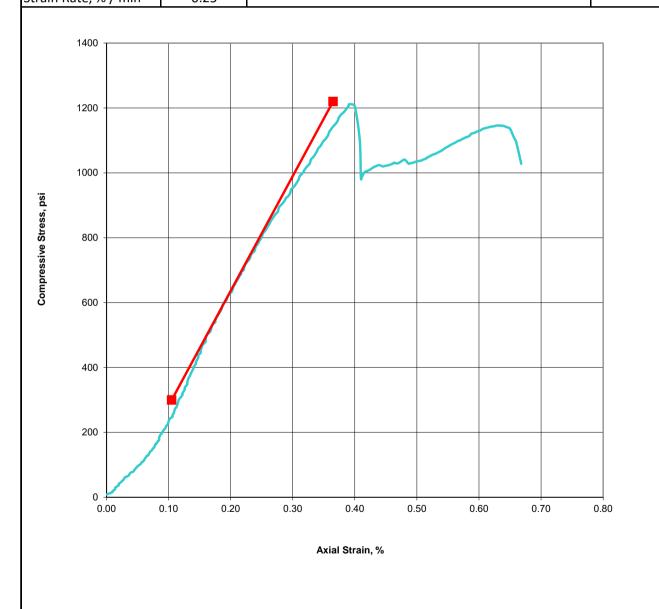
Test Temperature, (°C) Ambient

Sample Height, in.	5.01		
Sample Diameter, in.	2.40	Unconfined Compressive Strength	1662
Height / Diameter	2.1	(psi)	1002
Sample Area, in ²	4.51	(631)	
Wet Density, pcf	122.6		
Dry Density, pcf	95.9	Voundo Modulus (E) (noi)	245 600
Moisture Content, %	27.9	Young's Modulus (E) (psi)	315,600
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008H3
 Boring:
 B-27
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 11 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

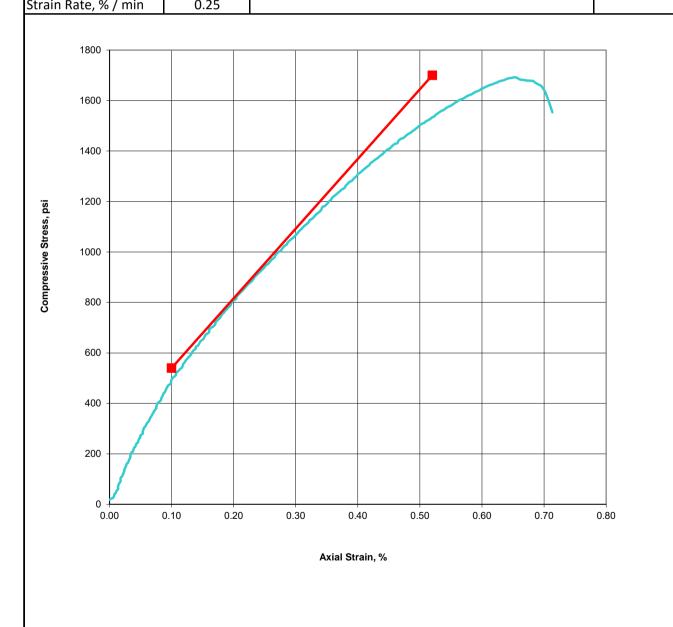
Test Temperature, (°C) Ambient

Sample Height, in.	5.07		
Sample Diameter, in.	2.38	Unconfined Compressive Strength	1211
Height / Diameter	2.1	(psi)	1211
Sample Area, in ²	4.45	(631)	
Wet Density, pcf	124.0		
Dry Density, pcf	95.8	Voundo Madulus (E) (noi)	252 000
Moisture Content, %	29.5	Young's Modulus (E) (psi)	353,800
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008H4
 Boring:
 B-27
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 12.25 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

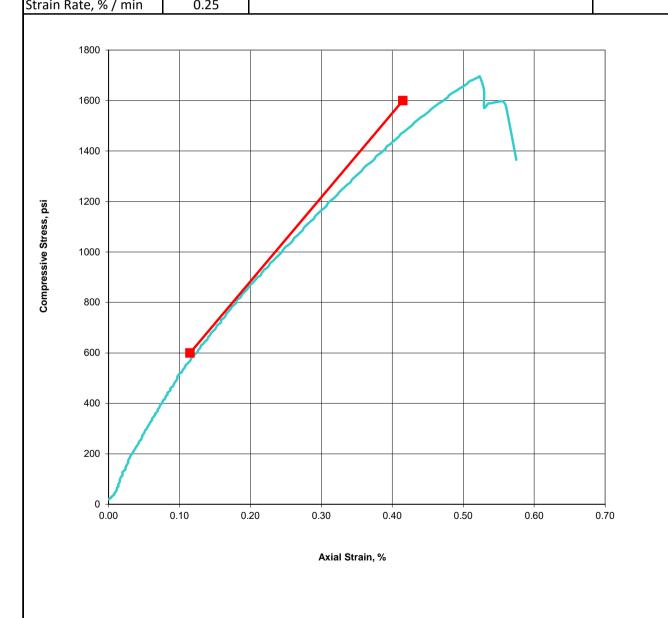
Test Temperature, (°C) Ambient

Sample Height, in.	5.05		
Sample Diameter, in.	2.38	Unconfined Compressive Strength	1692
Height / Diameter	2.1	(psi)	1092
Sample Area, in ²	4.44	(psi)	
Wet Density, pcf	124.7		
Dry Density, pcf	98.5	Voundo Madulus (E) (noi)	276 200
Moisture Content, %	26.6	Young's Modulus (E) (psi)	276,200
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008H5
 Boring:
 B-27
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 16 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

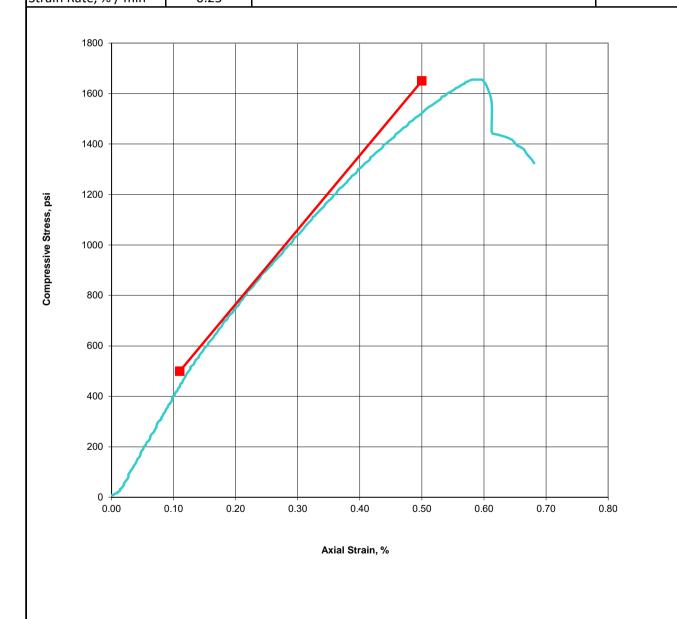
Test Temperature, (°C) Ambient

Sample Height, in.	5.05		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	1695
Height / Diameter	2.1	(psi)	1095
Sample Area, in ²	4.37	(psi)	
Wet Density, pcf	120.1		
Dry Density, pcf	94.1	Voundle Medulus (E) (noi)	222 200
Moisture Content, %	27.6	Young's Modulus (E) (psi)	333,300
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008H6
 Boring:
 B-27
 Date:
 9/15/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 19 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

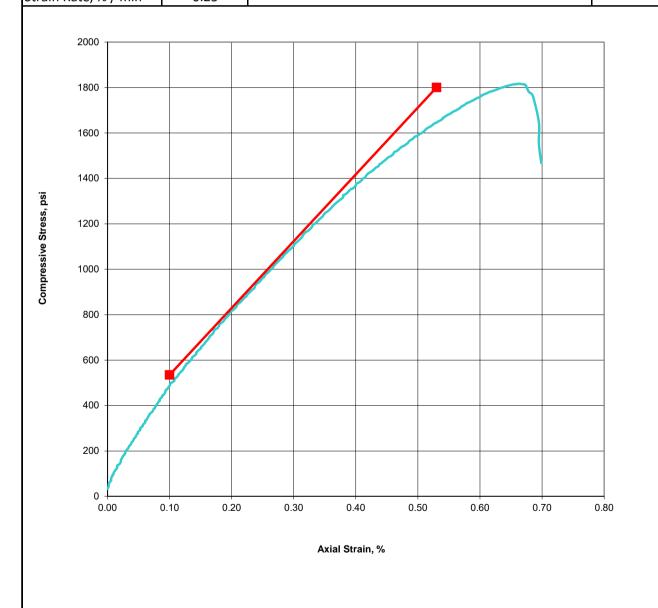
Test Temperature, (°C) Ambient

Sample Height, in.	5.11		
Sample Diameter, in.	2.34	Unconfined Compressive Strength	1655
Height / Diameter	2.2	(psi)	1000
Sample Area, in ²	4.30	(631)	
Wet Density, pcf	118.7		
Dry Density, pcf	91.0	Voundo Modulus (E) (noi)	204 000
Moisture Content, %	30.5	Young's Modulus (E) (psi)	294,900
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008H7
 Boring:
 B-27
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 21 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

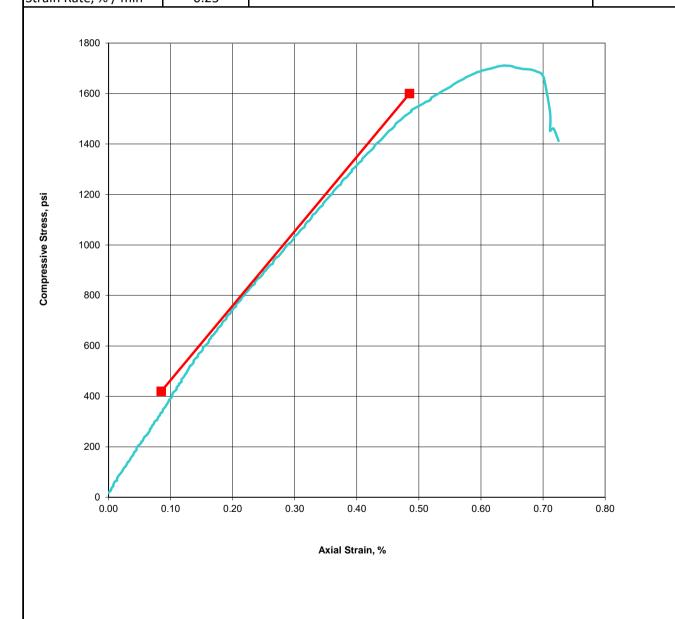
Test Temperature, (°C) Ambient

Sample Height, in.	5.11		
Sample Diameter, in.	2.40	Unconfined Compressive Strength	1816
Height / Diameter	2.1	(psi)	1010
Sample Area, in ²	4.52	(psi)	
Wet Density, pcf	120.5		
Dry Density, pcf	96.9	Vound's Madulus (E) (noi)	204 200
Moisture Content, %	24.4	Young's Modulus (E) (psi)	294,200
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008H8
 Boring:
 B-27
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 23 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

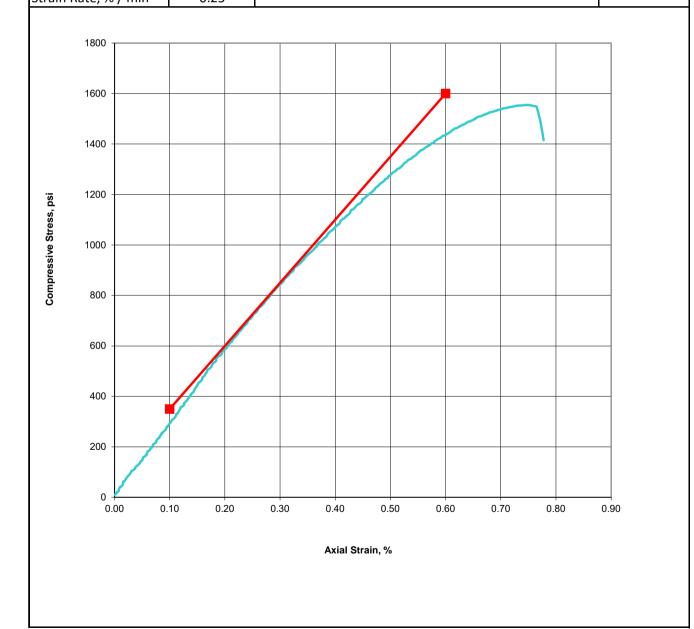
Test Temperature, (°C) Ambient

Sample Height, in.	5.10		
Sample Diameter, in.	2.38	Unconfined Compressive Strength	1711
Height / Diameter	2.1	(psi)	1711
Sample Area, in ²	4.46	(psi)	
Wet Density, pcf	122.3		
Dry Density, pcf	94.2	Vound's Madulus (E) (noi)	20E 000
Moisture Content, %	29.9	Young's Modulus (E) (psi)	295,000
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008H9
 Boring: B-27
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-5
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 25 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

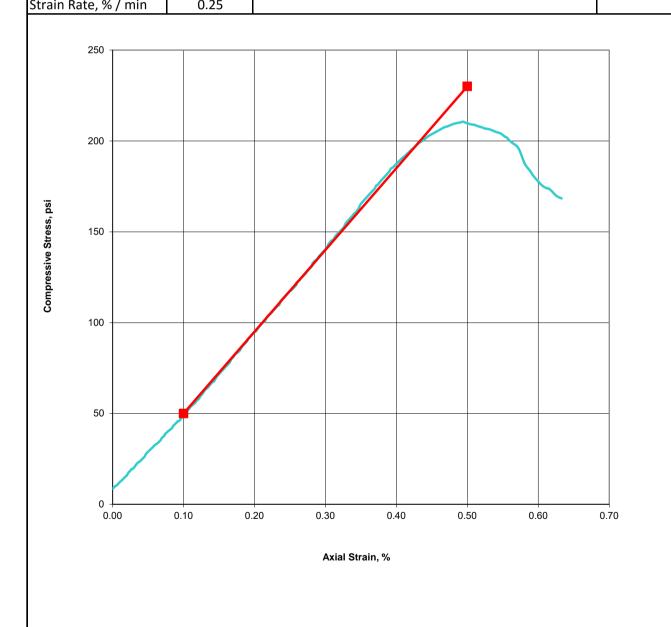
Test Temperature, (°C) Ambient

Sample Height, in.	5.16		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	1555
Height / Diameter	2.2	(psi)	1555
Sample Area, in ²	4.40	(psi)	
Wet Density, pcf	124.4		
Dry Density, pcf	97.5	Voundo Madulus (E) (noi)	250 000
Moisture Content, %	27.6	Young's Modulus (E) (psi)	250,000
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008I1
 Boring: B-28
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-1
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 7.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

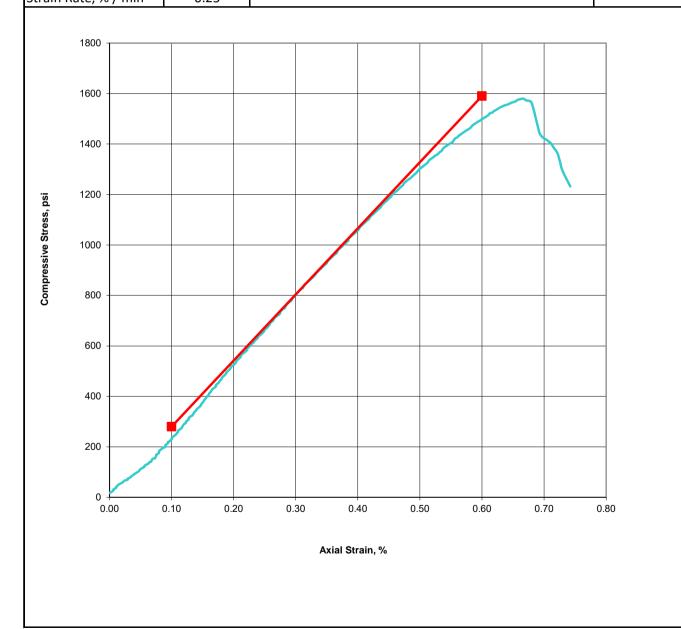
Test Temperature, (°C) Ambient

Sample Height, in.	4.90		
Sample Diameter, in.	2.41	Unconfined Compressive Strength	211
Height / Diameter	2.0	(psi)	211
Sample Area, in ²	4.55	(psi)	
Wet Density, pcf	124.8		
Dry Density, pcf	100.7	Voundo Madulus (E) (noi)	4E 000
Moisture Content, %	23.9	Young's Modulus (E) (psi)	45,000
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008I2
 Boring:
 B-28
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 10 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

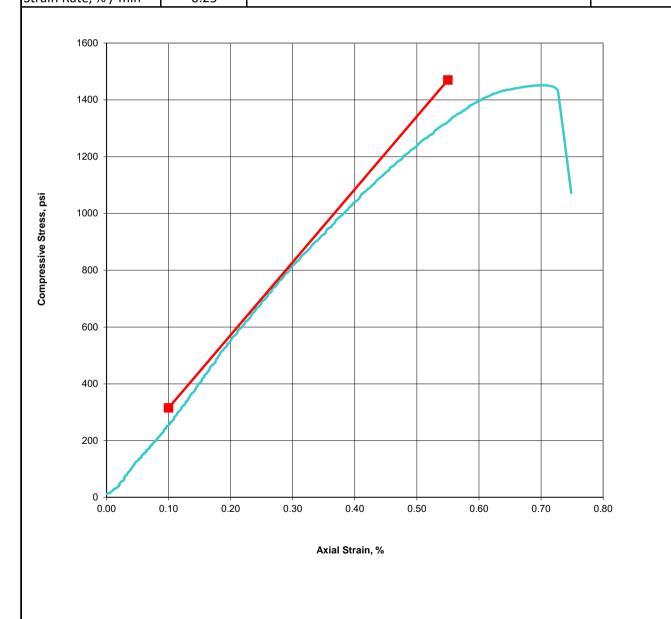
Test Temperature, (°C) Ambient

Sample Height, in.	4.78		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	1580
Height / Diameter	2.0	(psi)	1360
Sample Area, in ²	4.49	(psi)	
Wet Density, pcf	123.7		
Dry Density, pcf	99.6	Vound's Madulus (E) (noi)	262 000
Moisture Content, %	24.2	Young's Modulus (E) (psi)	262,000
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008I3
 Boring:
 B-28
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 12 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

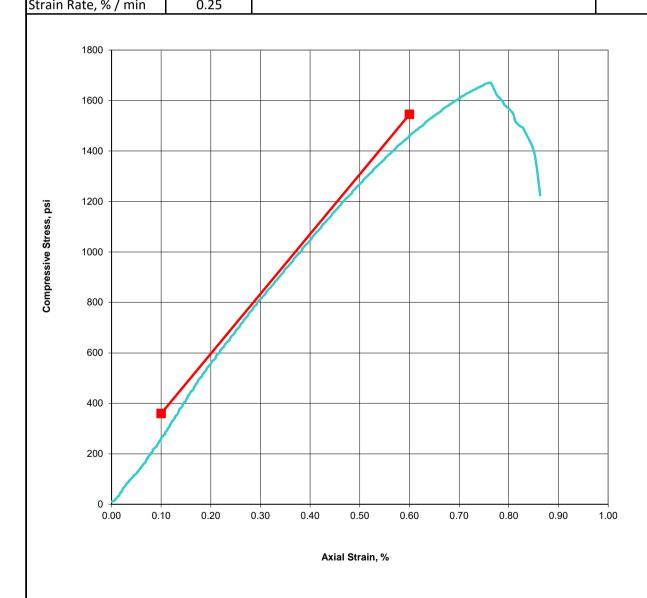
Test Temperature, (°C) Ambient

Sample Height, in.	5.14		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	1451
Height / Diameter	2.2	(psi)	1431
Sample Area, in ²	4.49	(psi)	
Wet Density, pcf	123.2		
Dry Density, pcf	96.1	Voundo Modulus (E) (noi)	256 700
Moisture Content, %	28.2	Young's Modulus (E) (psi)	256,700
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008l4
 Boring:
 B-28
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 15 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

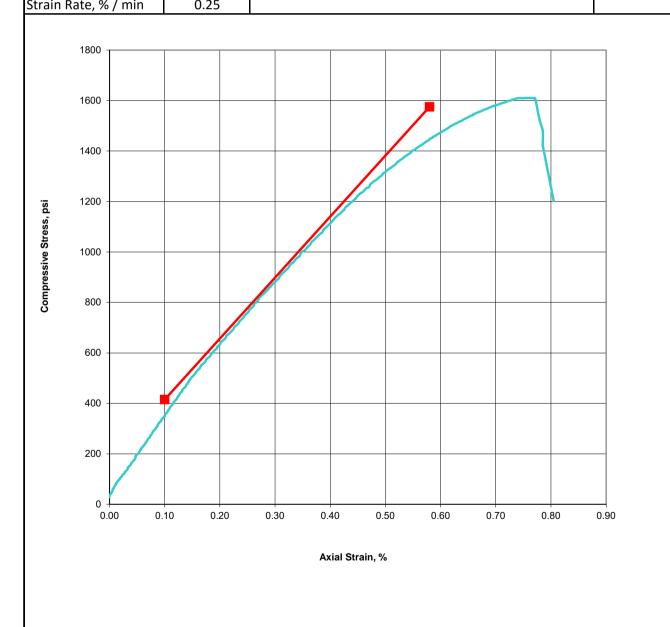
Test Temperature, (°C) Ambient

Sample Height, in.	5.17		
Sample Diameter, in.	2.40	Unconfined Compressive Strength	1670
Height / Diameter	2.2	(psi)	1070
Sample Area, in ²	4.52	(631)	
Wet Density, pcf	122.8		
Dry Density, pcf	98.3	Voundo Madulus (E) (noi)	227 000
Moisture Content, %	24.9	Young's Modulus (E) (psi)	237,000
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008I5
 Boring:
 B-28
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 17 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

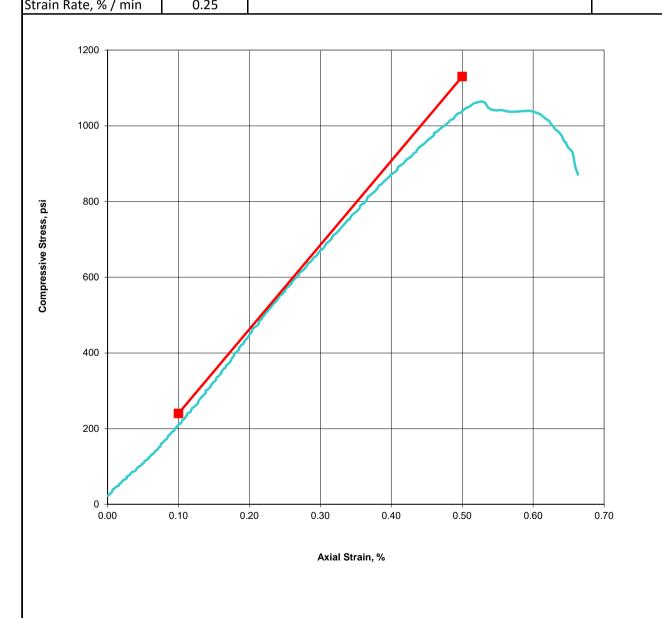
Test Temperature, (°C) Ambient

Sample Height, in.	5.08		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	1610
Height / Diameter	2.1	(psi)	1010
Sample Area, in ²	4.42	(psi)	
Wet Density, pcf	123.7		
Dry Density, pcf	98.3	Voundo Madulus (E) (noi)	244 700
Moisture Content, %	25.9	Young's Modulus (E) (psi)	241,700
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008l6
 Boring:
 B-28
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 19 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

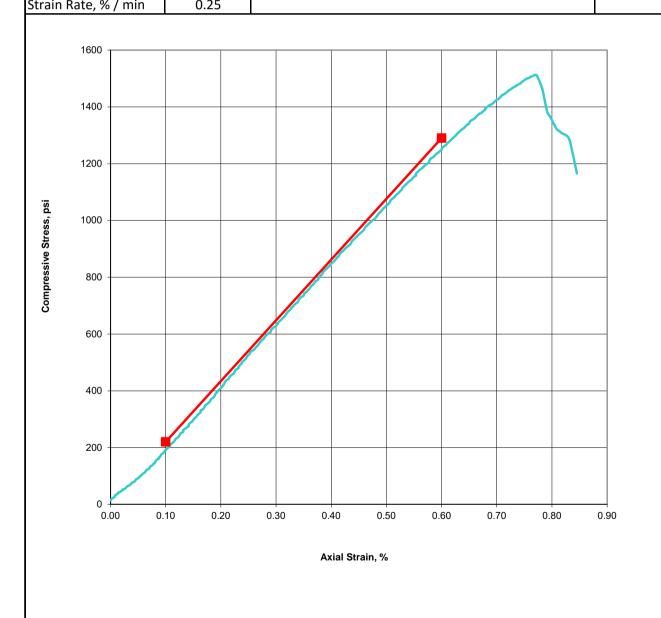
Test Temperature, (°C) Ambient

Sample Height, in.	5.13		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	1064
Height / Diameter	2.1	(psi)	1004
Sample Area, in ²	4.48	(psi)	
Wet Density, pcf	123.7		
Dry Density, pcf	98.2	Voundo Madulus (E) (noi)	222 500
Moisture Content, %	26.0	Young's Modulus (E) (psi)	222,500
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008J4
 Boring:
 B-29
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 12 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

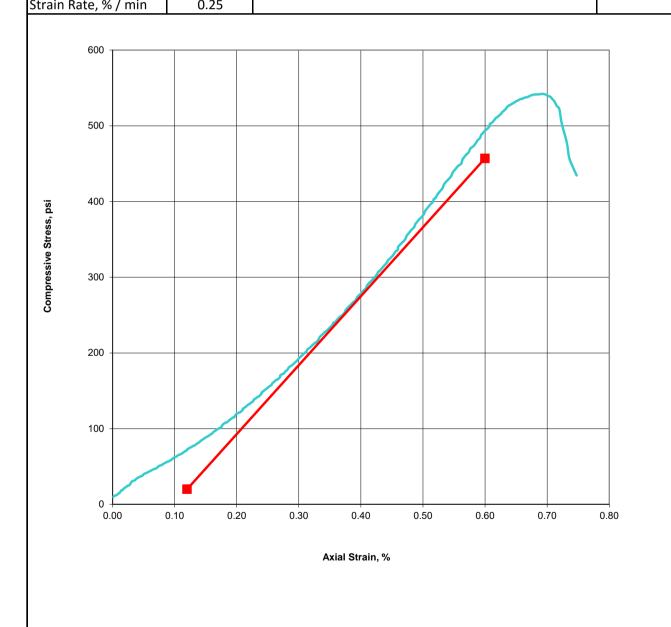
Test Temperature, (°C) Ambient

Sample Height, in.	5.00		
Sample Diameter, in.	2.34	Unconfined Compressive Strength	1512
Height / Diameter	2.1	(psi)	1312
Sample Area, in ²	4.29	(psi)	
Wet Density, pcf	123.6		
Dry Density, pcf	98.6	Voundo Madulus (E) (noi)	24.4.000
Moisture Content, %	25.4	Young's Modulus (E) (psi)	214,000
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008K1
 Boring:
 B-30
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 12 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

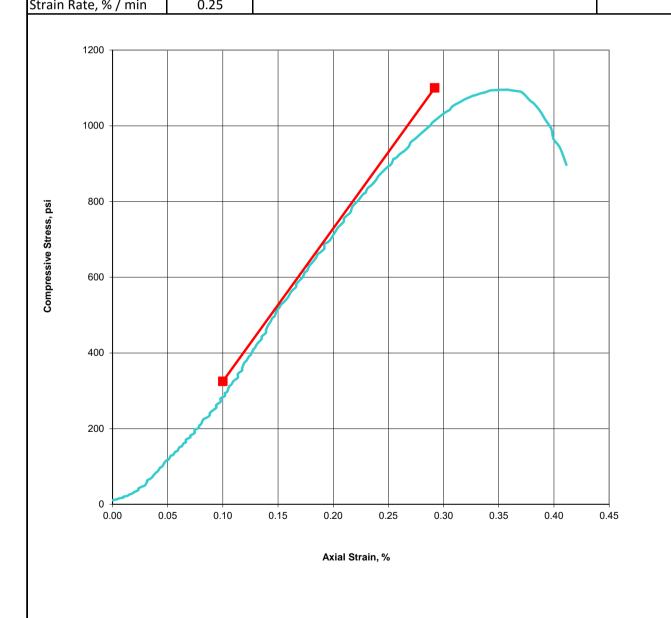
Test Temperature, (°C) Ambient

Sample Height, in.	5.00		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	542
Height / Diameter	2.1	(psi)	342
Sample Area, in ²	4.40	(psi)	
Wet Density, pcf	131.8		
Dry Density, pcf	110.4	Voundo Madulus (E) (noi)	04 000
Moisture Content, %	19.4	Young's Modulus (E) (psi)	91,000
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008K2
 Boring:
 B-30
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 14.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

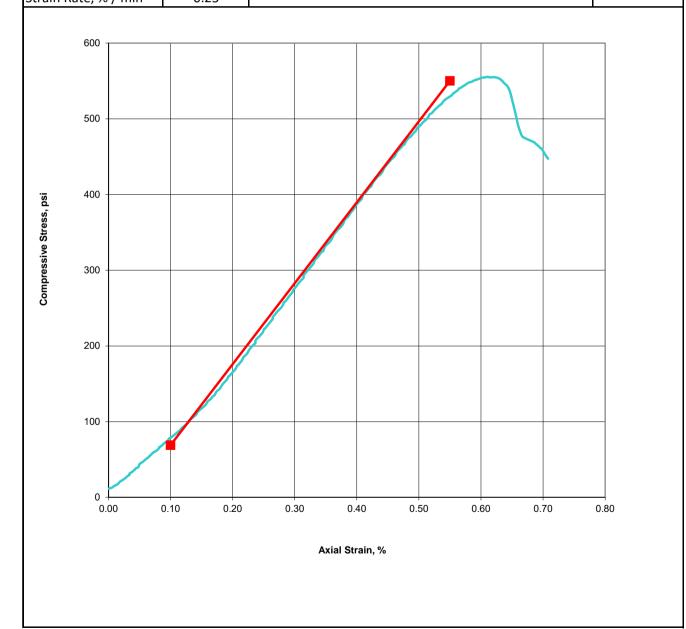
Test Temperature, (°C) Ambient

Sample Height, in.	5.11		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	1095
Height / Diameter	2.2	(psi)	1095
Sample Area, in ²	4.37	(631)	
Wet Density, pcf	147.3		
Dry Density, pcf	126.5	Voundo Madulus (E) (noi)	402 600
Moisture Content, %	16.4	Young's Modulus (E) (psi)	403,600
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008K3
 Boring:
 B-30
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 17.75 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

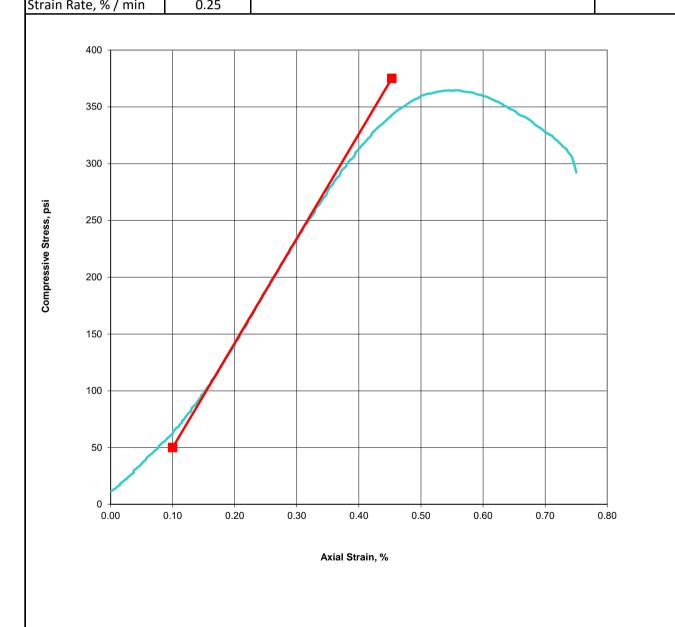
Test Temperature, (°C) Ambient

Sample Height, in.	5.03		
Sample Diameter, in.	2.28	Unconfined Compressive Strength	EEE
Height / Diameter	2.2	(psi)	555
Sample Area, in ²	4.09	(631)	
Wet Density, pcf	133.8		
Dry Density, pcf	112.1	Voundo Modulus (E) (noi)	106 000
Moisture Content, %	19.4	Young's Modulus (E) (psi)	106,900
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008K4
 Boring: B-30
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-3
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 22 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

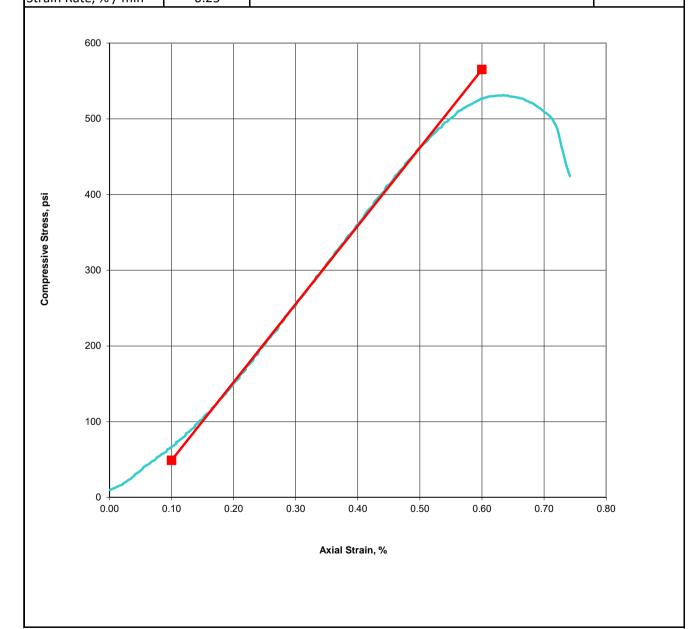
Test Temperature, (°C) Ambient

Sample Height, in.	5.12		
Sample Diameter, in.	2.35	Unconfined Compressive Strength	265
Height / Diameter	2.2	(psi)	365
Sample Area, in ²	4.33	(631)	
Wet Density, pcf	131.7		
Dry Density, pcf	110.6	Voundle Medulus (E) (noi)	00 400
Moisture Content, %	19.1	Young's Modulus (E) (psi)	92,100
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008K5
 Boring:
 B-30
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 25 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

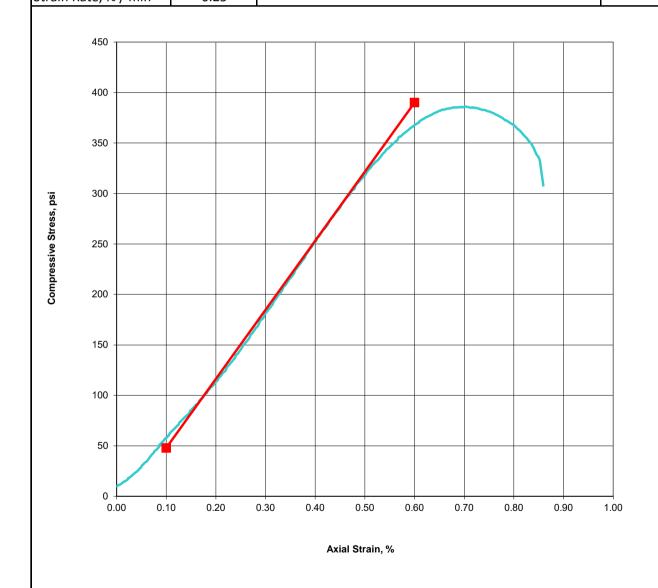
Test Temperature, (°C) Ambient

Sample Height, in.	5.02		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	531
Height / Diameter	2.1	(psi)	331
Sample Area, in ²	4.37	(631)	
Wet Density, pcf	133.8		
Dry Density, pcf	113.5	Vound's Madulus (E) (noi)	102 200
Moisture Content, %	18.0	Young's Modulus (E) (psi)	103,200
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008K6
 Boring: B-30
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-4
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 28 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

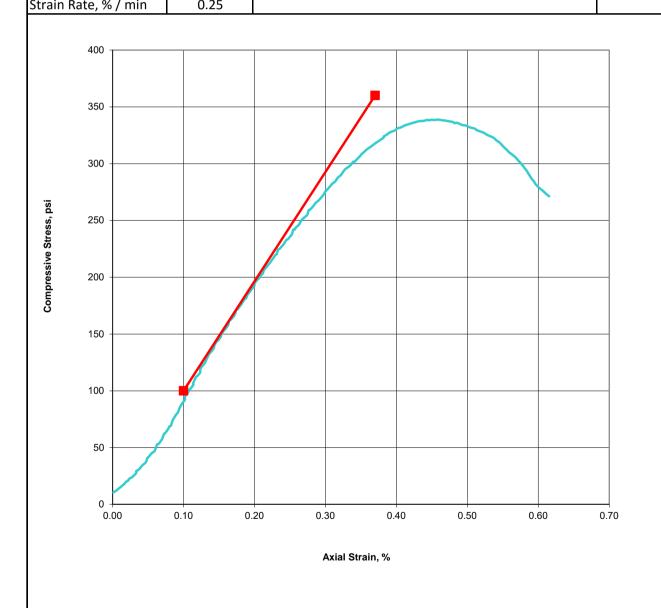
Test Temperature, (°C) Ambient

Sample Height, in. Sample Diameter, in. Height / Diameter Sample Area, in ²	5.12 2.36 2.2 4.39	Unconfined Compressive Strength (psi)	386
Wet Density, pcf Dry Density, pcf Moisture Content, %	133.5 113.4 17.7	Young's Modulus (E) (psi)	68,400
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008K7
 Boring: B-30
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-4
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 30 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

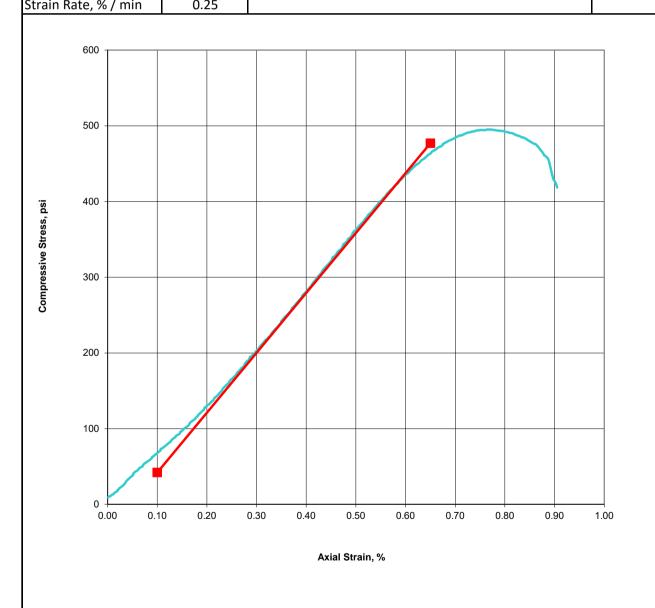
Test Temperature, (°C) Ambient

Sample Height, in.	5.10		
Sample Diameter, in.	2.35	Unconfined Compressive Strength	339
Height / Diameter	2.2	(psi)	339
Sample Area, in ²	4.35	(psi)	
Wet Density, pcf	131.6		
Dry Density, pcf	112.6	Voundle Medulus (E) (noi)	00.200
Moisture Content, %	16.9	Young's Modulus (E) (psi)	96,300
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008L1
 Boring: B-31
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-1
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 4 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

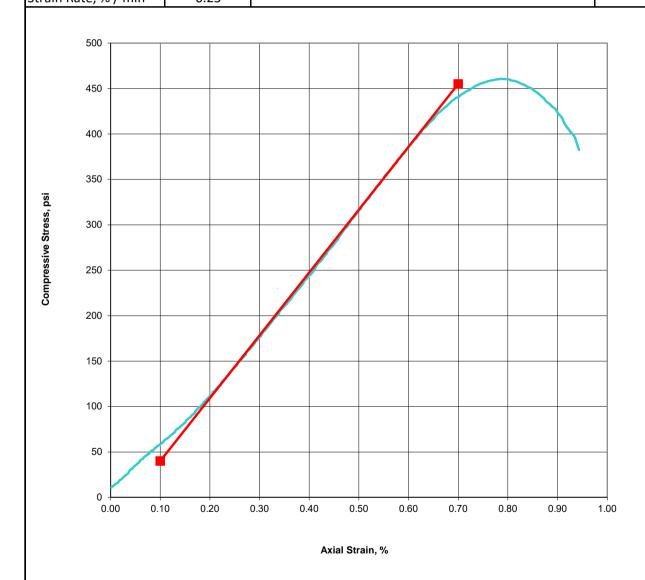
Test Temperature, (°C) Ambient

Sample Height, in.	5.06		
Sample Diameter, in.	2.35	Unconfined Compressive Strength	495
Height / Diameter	2.2	(psi)	495
Sample Area, in ²	4.33	(psi)	
Wet Density, pcf	132.4		
Dry Density, pcf	110.6	Voundo Madulus (E) (noi)	70 400
Moisture Content, %	19.7	Young's Modulus (E) (psi)	79,100
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008L2
 Boring:
 B-31
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 7 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

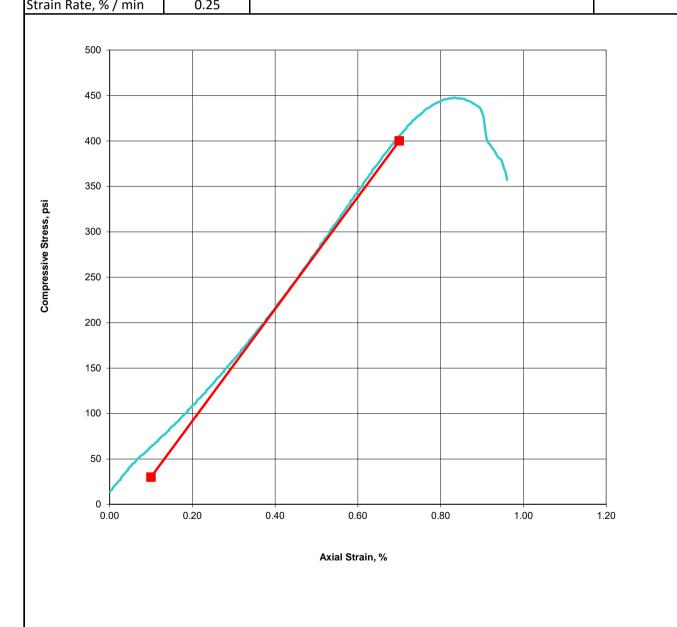
Test Temperature, (°C) Ambient

Sample Height, in.	5.06		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	461
Height / Diameter	2.1	(psi)	401
Sample Area, in ²	4.41	(631)	
Wet Density, pcf	131.1		
Dry Density, pcf	109.9	Vound's Madulus (E) (noi)	60 200
Moisture Content, %	19.3	Young's Modulus (E) (psi)	69,200
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008L3
 Boring:
 B-31
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 10 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

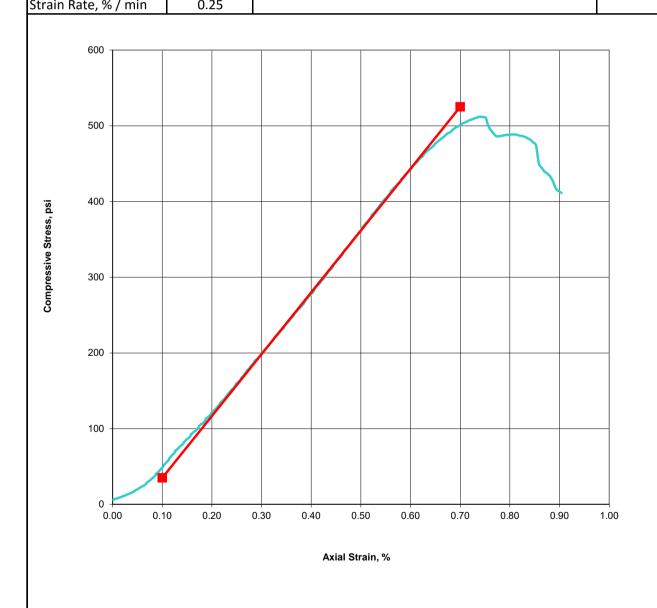
Test Temperature, (°C) Ambient

Sample Height, in.	5.10		
Sample Diameter, in.	2.38	Unconfined Compressive Strength	448
Height / Diameter	2.1	(psi)	440
Sample Area, in ²	4.44	(631)	
Wet Density, pcf	130.8		
Dry Density, pcf	108.5	Yaungla Madulua (E) (nai)	64 700
Moisture Content, %	20.6	Young's Modulus (E) (psi)	61,700
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008L4
 Boring: B-31
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-3
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 14 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

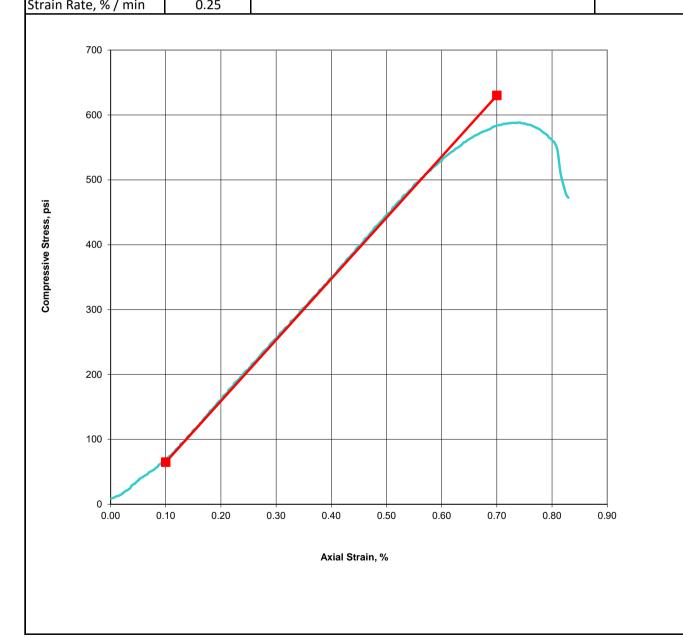
Test Temperature, (°C) Ambient

Sample Height, in.	5.06		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	512
Height / Diameter	2.1	(psi)	312
Sample Area, in ²	4.47	(psi)	
Wet Density, pcf	132.6		
Dry Density, pcf	111.6	Vound's Madulus (E) (noi)	04 700
Moisture Content, %	18.8	Young's Modulus (E) (psi)	81,700
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008L5
 Boring: B-31
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-3
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 17 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

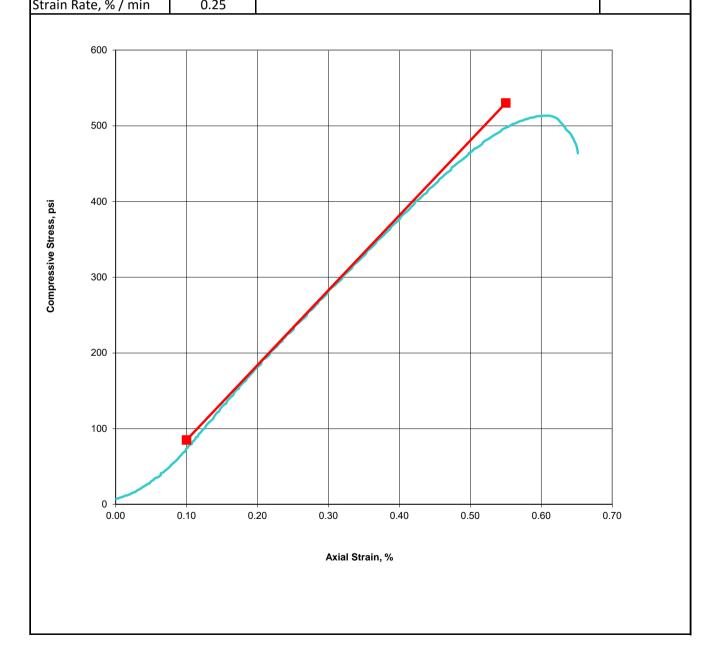
Test Temperature, (°C) Ambient

Sample Height, in.	5.05		
Sample Diameter, in.	2.40	Unconfined Compressive Strength	5 00
Height / Diameter	2.1	(psi)	588
Sample Area, in ²	4.53	(psi)	
Wet Density, pcf	132.3		
Dry Density, pcf	110.8	Voundo Madulus (E) (noi)	04 200
Moisture Content, %	19.4	Young's Modulus (E) (psi)	94,200
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008L6
 Boring:
 B-31
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 20 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.02		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	513
Height / Diameter	2.1	(psi)	513
Sample Area, in ²	4.48	(psi)	
Wet Density, pcf	132.1		
Dry Density, pcf	113.9	Voundo Madulus (E) (noi)	00 000
Moisture Content, %	16.0	Young's Modulus (E) (psi)	98,900
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008L7
 Boring:
 B-31
 Date:
 9/22/2016

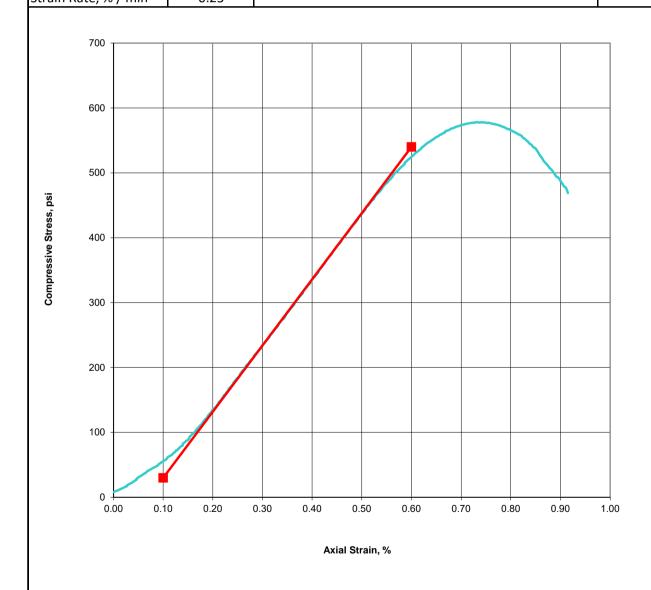
 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay Channel

Modification Project

Delta Delt

Modification Project Depth,ft.: 22 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

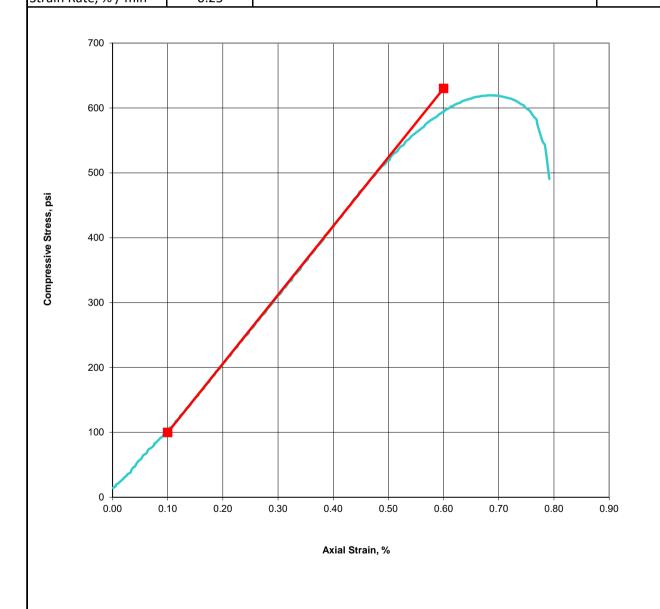
Test Temperature, (°C) Ambient

Sample Height, in.	5.17		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	578
Height / Diameter	2.2	(psi)	3/6
Sample Area, in ²	4.48	(psi)	
Wet Density, pcf	132.5		
Dry Density, pcf	111.3	Voungle Medulus (E) (noi)	102 000
Moisture Content, %	19.0	Young's Modulus (E) (psi)	102,000
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008L8
 Boring:
 B-31
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 24 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

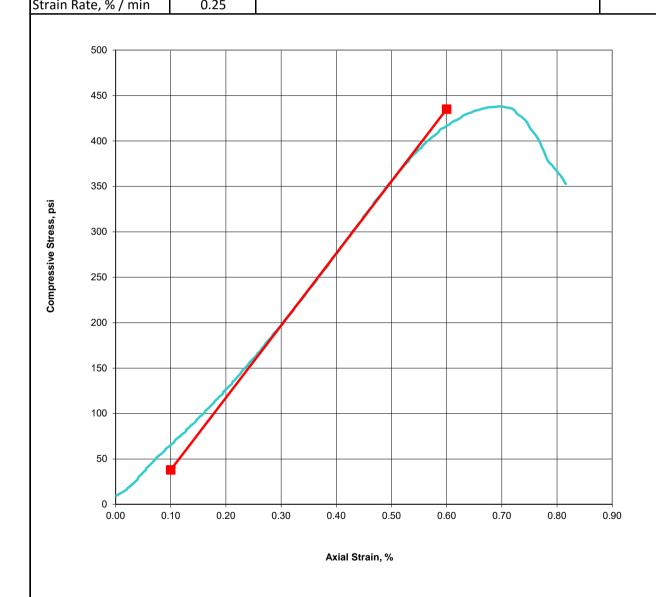
Test Temperature, (°C) Ambient

Sample Height, in.	5.14		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	619
Height / Diameter	2.2	(psi)	019
Sample Area, in ²	4.41	(631)	
Wet Density, pcf	131.7		
Dry Density, pcf	108.8	Voundo Modulus (E) (noi)	106 000
Moisture Content, %	21.0	Young's Modulus (E) (psi)	106,000
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008L9
 Boring: B-31
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-5
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 28 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

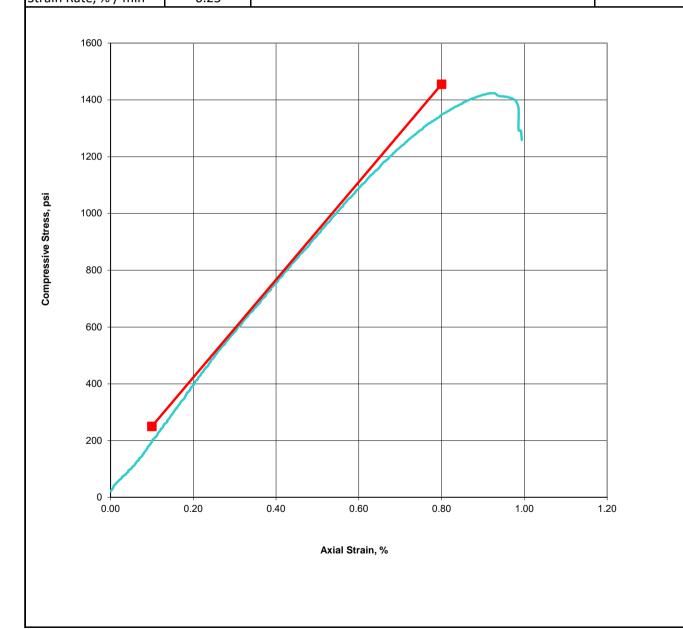
Test Temperature, (°C) Ambient

Sample Height, in.	5.08		
Sample Diameter, in.	2.39	Unconfined Compressive Strength	420
Height / Diameter	2.1	(psi)	438
Sample Area, in ²	4.49	(psi)	
Wet Density, pcf	132.0		
Dry Density, pcf	109.4	Vound's Madulus (E) (noi)	70 400
Moisture Content, %	20.6	Young's Modulus (E) (psi)	79,400
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008M1
 Boring:
 B-32
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 2.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

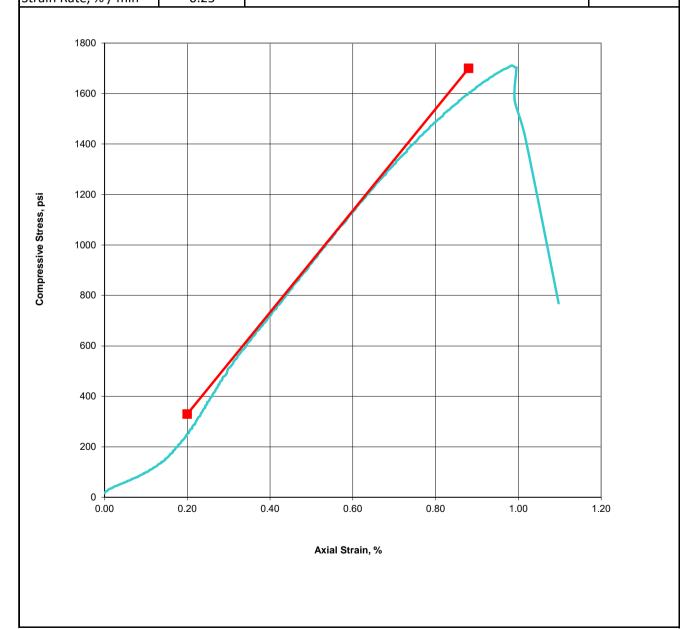
Test Temperature, (°C) Ambient

Sample Height, in.	5.09		
Sample Diameter, in.	2.38	Unconfined Compressive Strength	1424
Height / Diameter	2.1	(psi)	1424
Sample Area, in ²	4.45	(psi)	
Wet Density, pcf	125.5		
Dry Density, pcf	101.9	Vound's Madulus (E) (noi)	472 400
Moisture Content, %	23.1	Young's Modulus (E) (psi)	172,100
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008M2
 Boring:
 B-32
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 6.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

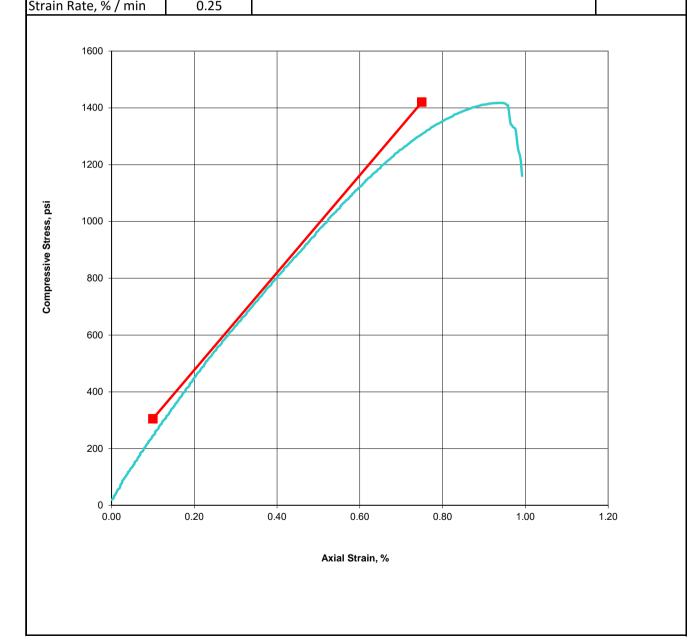
Test Temperature, (°C) Ambient

Sample Height, in.	4.72		-
Sample Diameter, in.	2.35	Unconfined Compressive Strength	1711
Height / Diameter	2.0	(psi)	1711
Sample Area, in ²	4.35	(631)	
Wet Density, pcf	118.0		
Dry Density, pcf	96.2	Vound's Madulus (E) (noi)	204 500
Moisture Content, %	22.6	Young's Modulus (E) (psi)	201,500
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008M3
 Boring:
 B-32
 Date:
 9/22/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 8.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

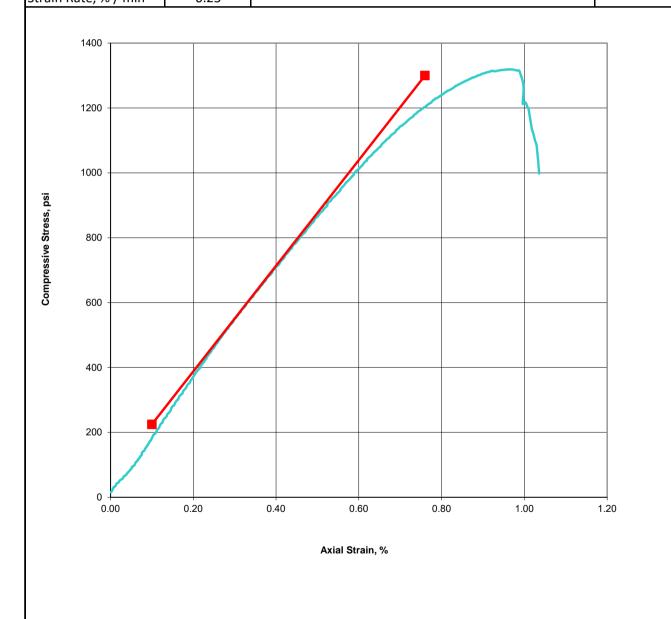
Test Temperature, (°C) Ambient

Sample Height, in.	5.03		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	1418
Height / Diameter	2.1	(psi)	1410
Sample Area, in ²	4.36	(631)	
Wet Density, pcf	124.3		
Dry Density, pcf	100.8	Vounda Madulus (E) (noi)	171 500
Moisture Content, %	23.3	Young's Modulus (E) (psi)	171,500
Ctrain Data 0/ / min	0.25	1	l

 CTL Job No.:
 823-008M4
 Boring: B-32
 Date: 9/22/2016

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 10.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

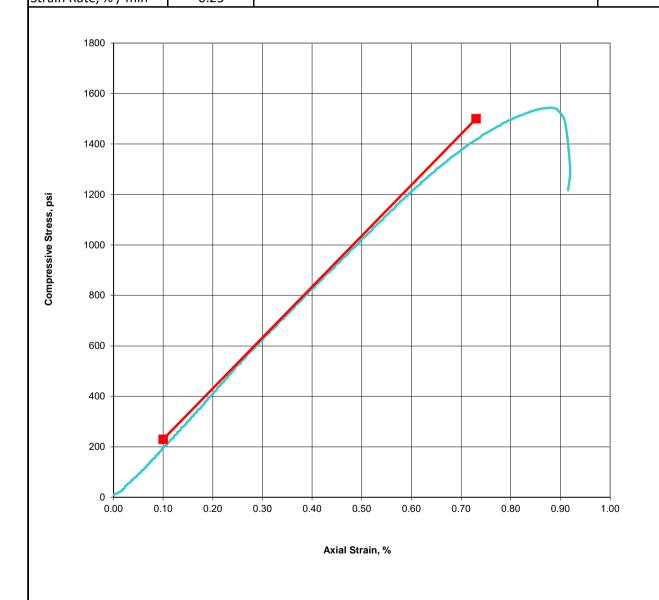
Test Temperature, (°C) Ambient

Sample Height, in.	5.02		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	1319
Height / Diameter	2.1	(psi)	1319
Sample Area, in ²	4.40	(631)	
Wet Density, pcf	125.8		
Dry Density, pcf	102.3	Voundo Modulus (E) (noi)	162 000
Moisture Content, %	23.0	Young's Modulus (E) (psi)	162,900
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008M5
 Boring:
 B-32
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 12.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

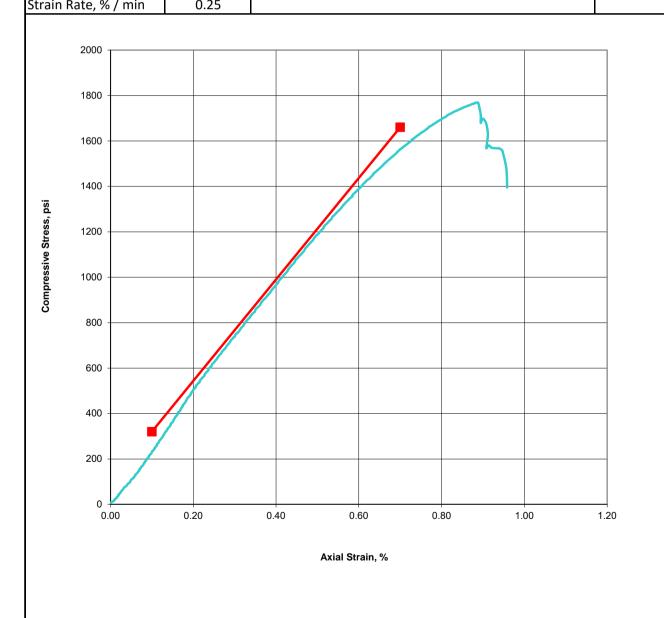
Test Temperature, (°C) Ambient

Sample Height, in.	4.96		
Sample Diameter, in.	2.34	Unconfined Compressive Strength	1544
Height / Diameter	2.1	(psi)	1544
Sample Area, in ²	4.32	(psi)	
Wet Density, pcf	123.2		
Dry Density, pcf	99.3	Voundo Madulus (E) (noi)	204 600
Moisture Content, %	24.0	Young's Modulus (E) (psi)	201,600
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008M6
 Boring: B-32
 Date: 9/23/2016

 Client:
 GRI
 Sample: R-4
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 17 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

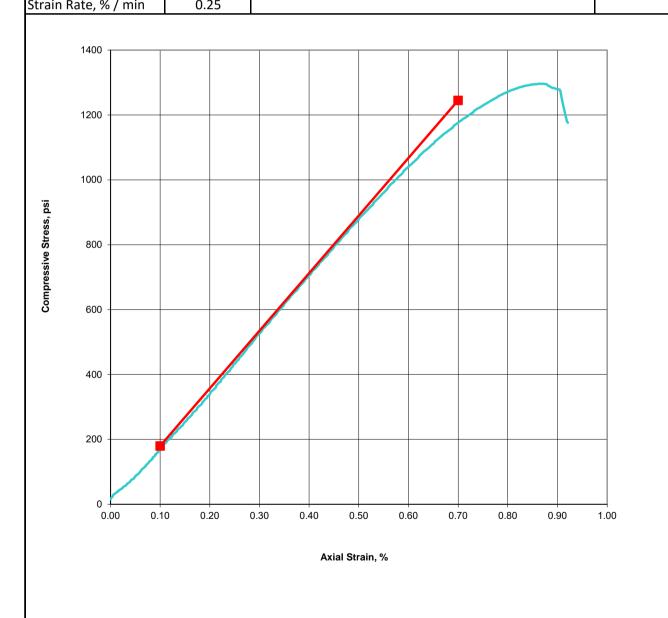
Test Temperature, (°C) Ambient

Sample Height, in.	5.17		
Sample Diameter, in.	2.33	Unconfined Compressive Strength	1769
Height / Diameter	2.2	(psi)	1769
Sample Area, in ²	4.26	(psi)	
Wet Density, pcf	117.9		
Dry Density, pcf	94.2	Vound's Madulus (E) (noi)	222 200
Moisture Content, %	25.2	Young's Modulus (E) (psi)	223,300
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008M7
 Boring: B-32
 Date: 9/23/2016

 Client:
 GRI
 Sample: R-4
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 19.5 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

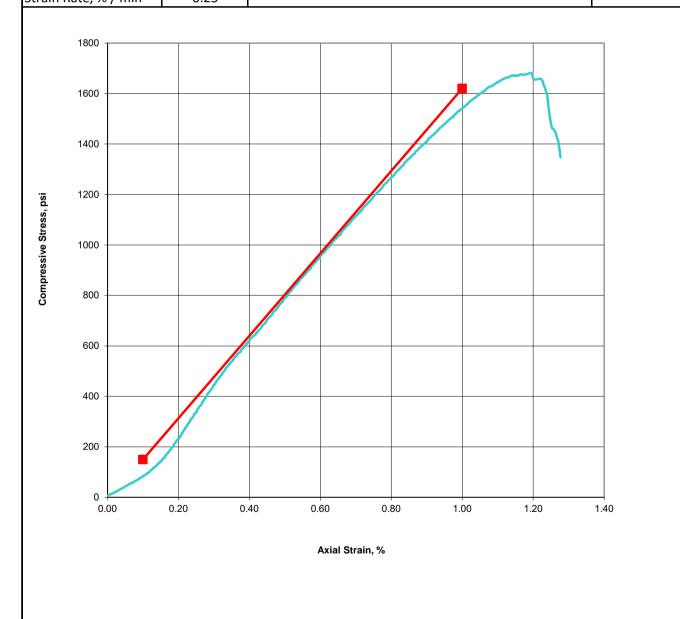
Test Temperature, (°C) Ambient

Sample Height, in.	5.08		
Sample Diameter, in.	2.33	Unconfined Compressive Strength	1296
Height / Diameter	2.2	(psi)	1290
Sample Area, in ²	4.28	(psi)	
Wet Density, pcf	124.3		
Dry Density, pcf	100.5	Voundo Madulus (E) (noi)	477 F00
Moisture Content, %	23.7	Young's Modulus (E) (psi)	177,500
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008N1
 Boring:
 B-33
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 2 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

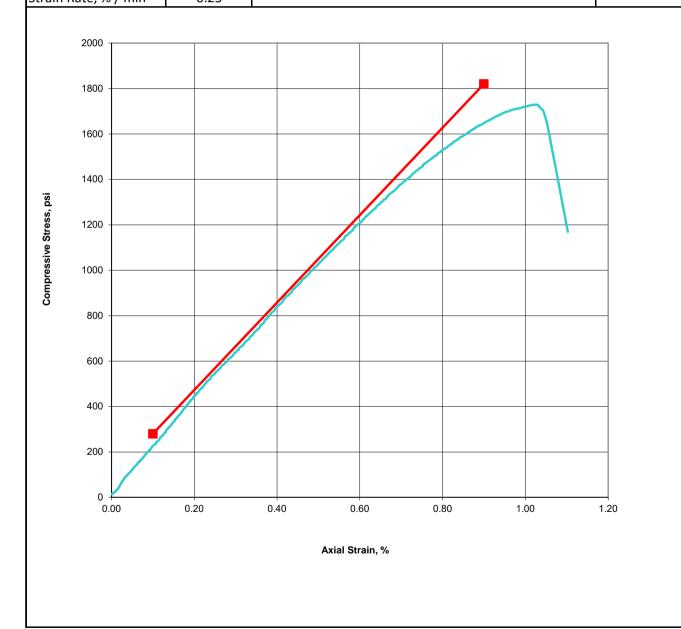
Test Temperature, (°C) Ambient

Sample Height, in.	5.04		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	1681
Height / Diameter	2.1	(psi)	1001
Sample Area, in ²	4.36	(631)	
Wet Density, pcf	0.0		
Dry Density, pcf	0.0	Vound's Madulus (E) (noi)	162 200
Moisture Content, %	23.9	Young's Modulus (E) (psi)	163,300
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008N2
 Boring:
 B-33
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 6 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

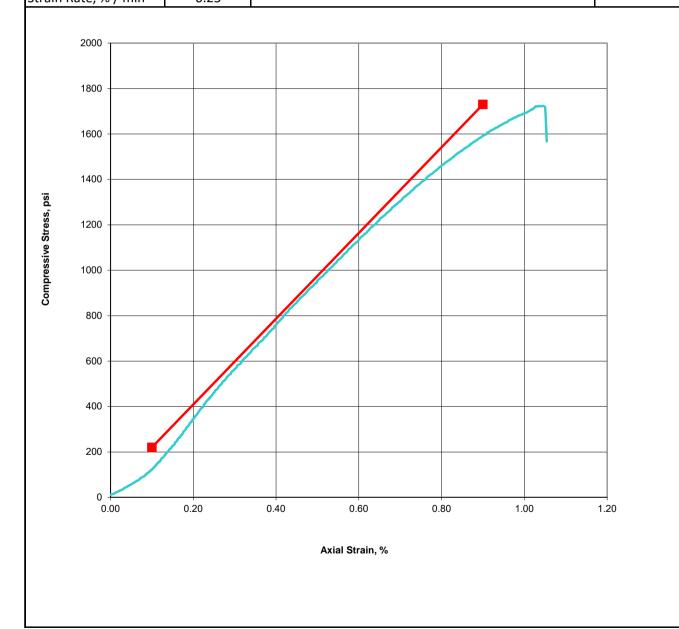
Test Temperature, (°C) Ambient

Sample Height, in.	5.11		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	1729
Height / Diameter	2.2	(psi)	1729
Sample Area, in ²	4.37	(631)	
Wet Density, pcf	121.3		
Dry Density, pcf	97.7	Voundo Modulus (E) (noi)	402 E00
Moisture Content, %	24.2	Young's Modulus (E) (psi)	192,500
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008N3
 Boring:
 B-33
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 9 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

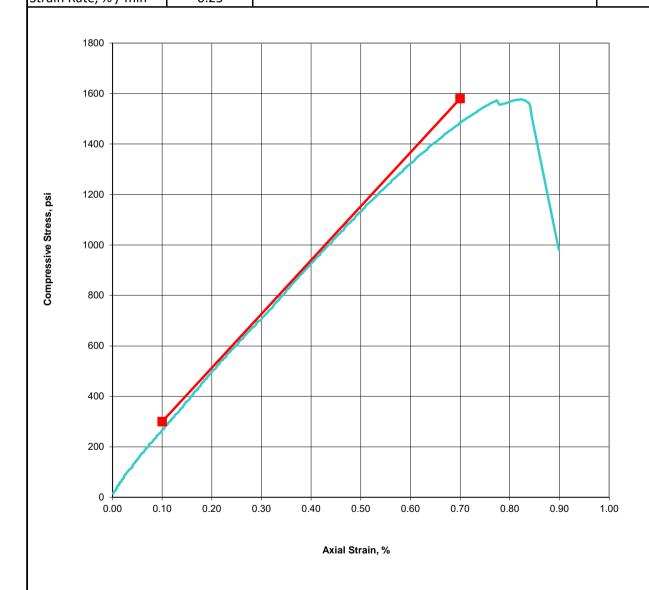
Test Temperature, (°C) Ambient

Sample Height, in.	5.12		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	1723
Height / Diameter	2.2	(psi)	1723
Sample Area, in ²	4.40	(631)	
Wet Density, pcf	117.7		
Dry Density, pcf	92.0	Voundo Modulus (E) (noi)	100 000
Moisture Content, %	27.9	Young's Modulus (E) (psi)	188,800
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008N4
 Boring:
 B-33
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 16 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

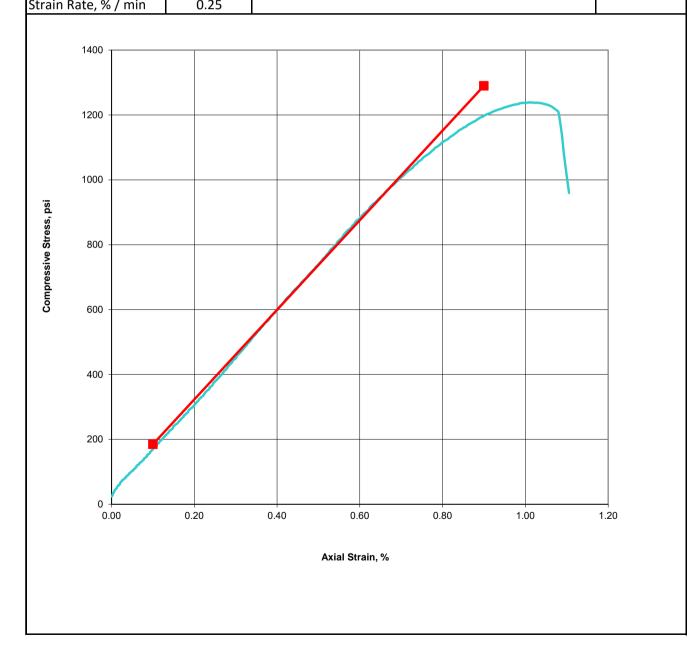
Test Temperature, (°C) Ambient

Sample Height, in.	5.14		
Sample Diameter, in.	2.34	Unconfined Compressive Strength	1576
Height / Diameter	2.2	(psi)	1376
Sample Area, in ²	4.31	(631)	
Wet Density, pcf	116.9		
Dry Density, pcf	90.0	Voundo Modulus (E) (noi)	242 200
Moisture Content, %	29.9	Young's Modulus (E) (psi)	213,300
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008N5
 Boring:
 B-33
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-7
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 21 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

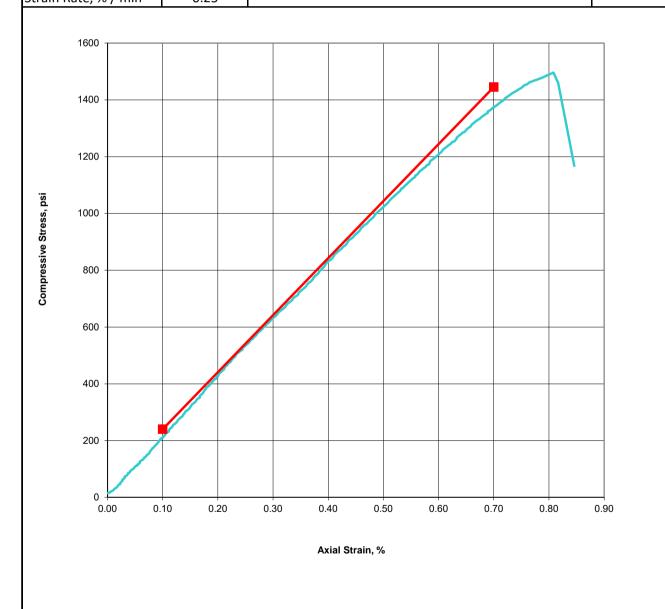
Test Temperature, (°C) Ambient

Sample Height, in.	5.15		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	1239
Height / Diameter	2.2	(psi)	1239
Sample Area, in ²	4.36	(psi)	
Wet Density, pcf	126.4		
Dry Density, pcf	103.1	Youngle Medulus (F) (noi)	420 400
Moisture Content, %	22.6	Young's Modulus (E) (psi)	138,100
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008N6
 Boring:
 B-33
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-8
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 26 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

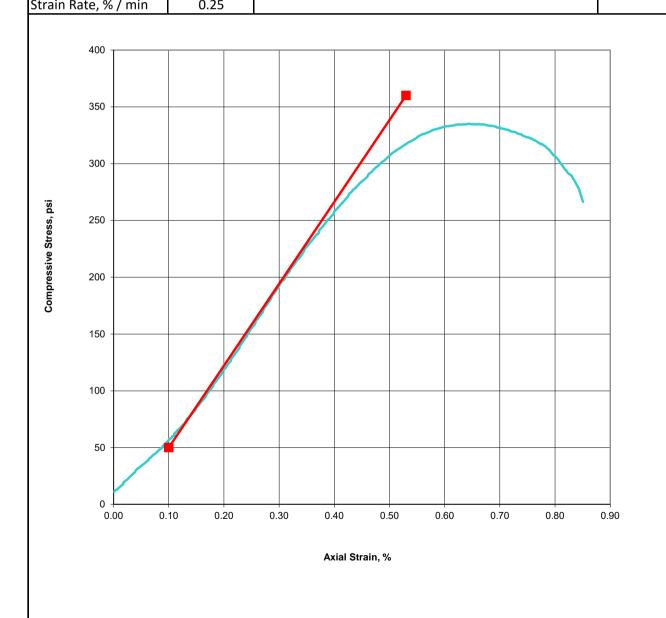
Test Temperature, (°C) Ambient

Sample Height, in.	4.79		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	1495
Height / Diameter	2.0	(psi)	1495
Sample Area, in ²	4.41	(psi)	
Wet Density, pcf	120.6		
Dry Density, pcf	96.3	Voungle Medulus (E) (noi)	200 000
Moisture Content, %	25.3	Young's Modulus (E) (psi)	200,800
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008O1
 Boring: B-40
 Date: 9/23/2016

 Client:
 GRI
 Sample: R-1
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 3 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

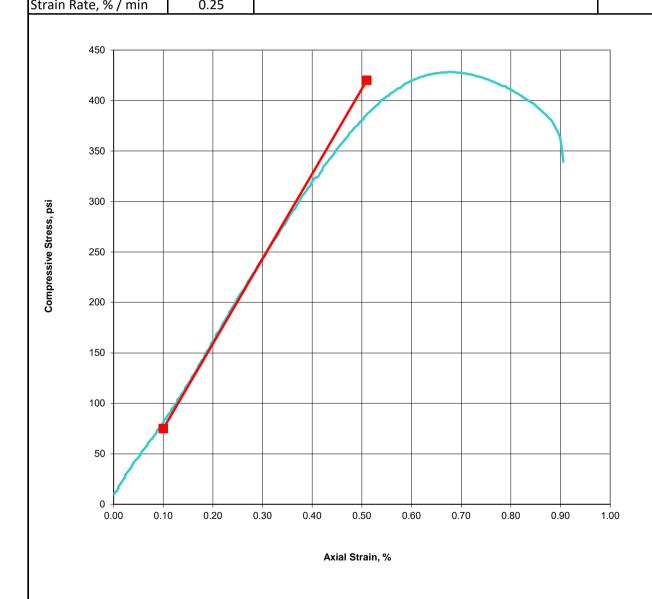
Test Temperature, (°C) Ambient

Sample Height, in.	5.17		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	225
Height / Diameter	2.2	(psi)	335
Sample Area, in ²	4.36	(psi)	
Wet Density, pcf	132.5		
Dry Density, pcf	111.1	Voundle Medulus (E) (noi)	72 400
Moisture Content, %	19.2	Young's Modulus (E) (psi)	72,100
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008O2
 Boring: B-40
 Date: 9/23/2016

 Client:
 GRI
 Sample: R-1
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 6 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

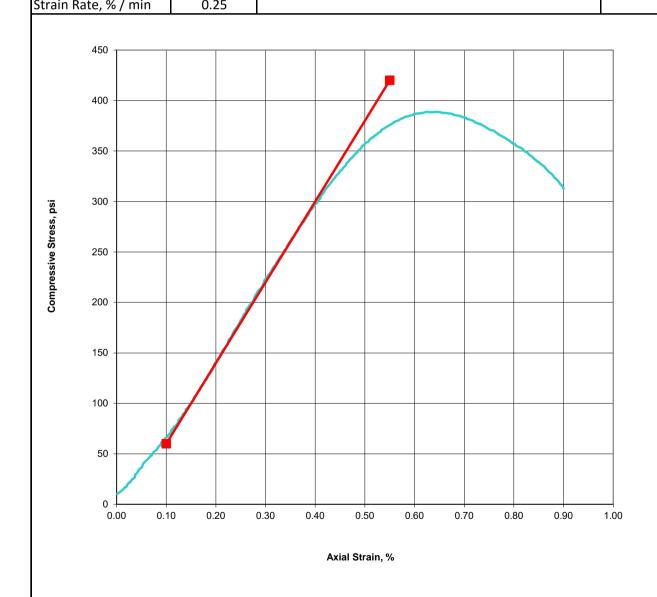
Test Temperature, (°C) Ambient

Sample Height, in. Sample Diameter, in. Height / Diameter Sample Area, in ²	5.15 2.38 2.2 4.45	Unconfined Compressive Strength (psi)	428
Wet Density, pcf Dry Density, pcf	132.4 111.4	Young's Modulus (E) (psi)	84,100
Moisture Content, %	18.8		2 :,: 3 3

 CTL Job No.:
 823-008O3
 Boring: B-40
 Date: 9/23/2016

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 10 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

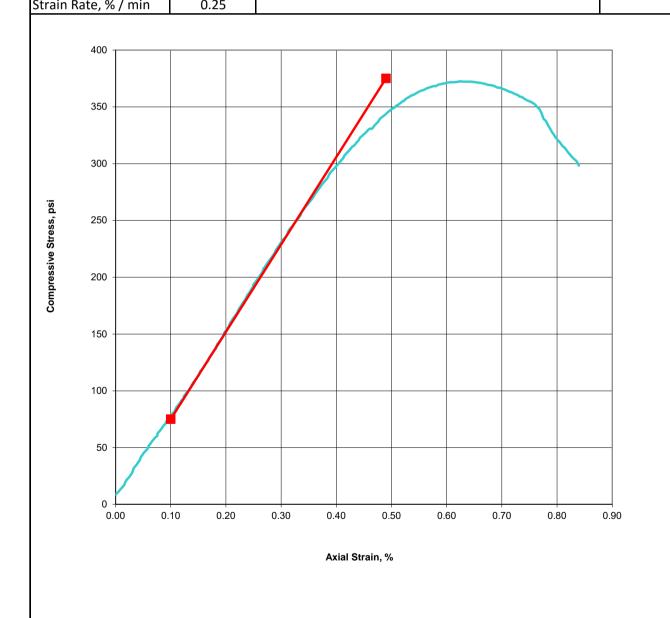
Test Temperature, (°C) Ambient

Sample Height, in. Sample Diameter, in. Height / Diameter Sample Area, in ²	5.10 2.36 2.2 4.39	Unconfined Compressive Strength (psi)	389
Wet Density, pcf Dry Density, pcf	132.9 111.9		
Moisture Content, %	18.7	Young's Modulus (E) (psi)	80,000
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-008O4
 Boring:
 B-40
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 11 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

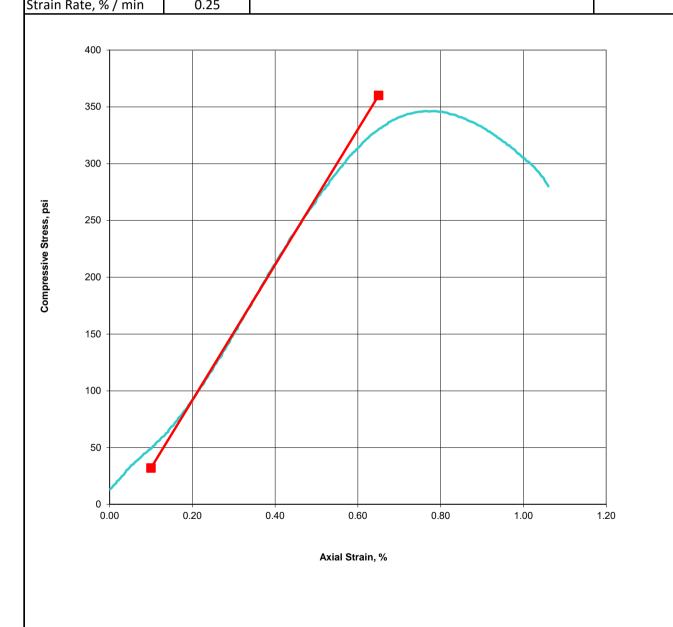
Test Temperature, (°C) Ambient

Sample Height, in. Sample Diameter, in. Height / Diameter Sample Area, in ²	5.01 2.36 2.1 4.37	Unconfined Compressive Strength (psi)	372
Wet Density, pcf Dry Density, pcf Moisture Content, %	133.2 112.1 18.8	Young's Modulus (E) (psi)	76,900
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008O5
 Boring:
 B-40
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 16 Checked: DC


Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.08		
Sample Diameter, in.	2.31	Unconfined Compressive Strength	346
Height / Diameter	2.2	(psi)	340
Sample Area, in ²	4.19	(psi)	
Wet Density, pcf	132.3		
Dry Density, pcf	111.0	Voundo Madulus (E) (noi)	E0 600
Moisture Content, %	19.2	Young's Modulus (E) (psi)	59,600
Strain Rate % / min	0.25		

 CTL Job No.:
 823-008O6
 Boring:
 B-40
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 21 Checked: DC

Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Remarks: The height to diamter ratio is very slightly higher than allowed by

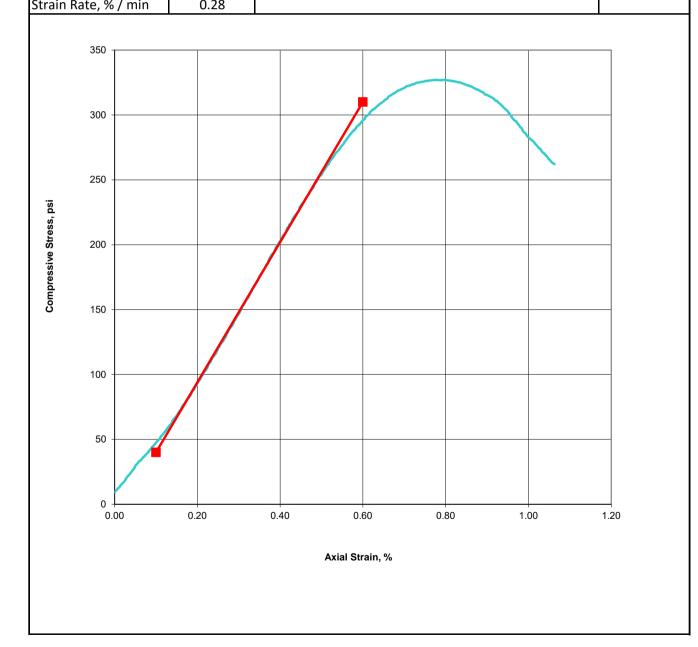
the spec.

Sample Height, in. Sample Diameter, in. Height / Diameter Sample Area, in ²	5.17 2.28 2.27 4.07	Unconfined Compressive Strength (psi)	258
Wet Density, pcf Dry Density, pcf	129.6 108.5	Variable Madeline (E) (sai)	46 400
Moisture Content, % Strain Rate, % / min	19.5 0.25	Young's Modulus (E) (psi)	46,400

 CTL Job No.:
 823-008O7
 Boring:
 B-40
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 23 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

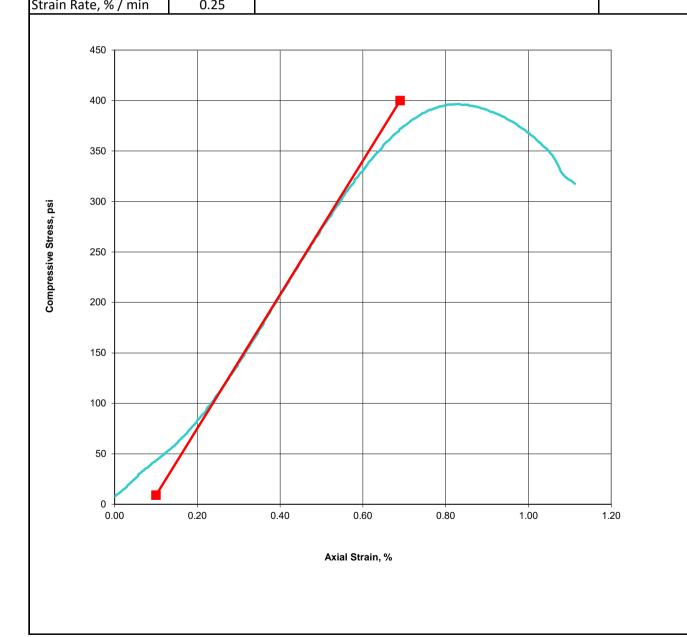
Test Temperature, (°C) Ambient

Sample Height, in.	5.18		
Sample Diameter, in.	2.33	Unconfined Compressive Strength	327
Height / Diameter	2.2	(psi)	321
Sample Area, in ²	4.26	(631)	
Wet Density, pcf	129.3		
Dry Density, pcf	107.6	Voundle Medulus (E) (noi)	E 4 000
Moisture Content, %	20.1	Young's Modulus (E) (psi)	54,000
Strain Rate % / min	0.28	1	

 CTL Job No.:
 823-008O8
 Boring:
 B-40
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-7
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 26 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

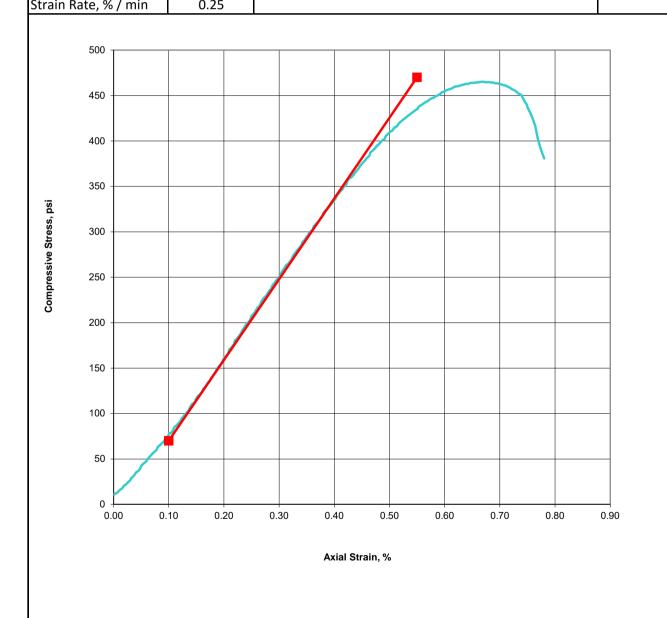
Test Temperature, (°C) Ambient

Sample Height, in.	5.08		
Sample Diameter, in.	2.36	Unconfined Compressive Strength	397
Height / Diameter	2.1	(psi)	391
Sample Area, in ²	4.39	(631)	
Wet Density, pcf	131.2		
Dry Density, pcf	109.8	Youngle Medulus (F) (noi)	cc 200
Moisture Content, %	19.5	Young's Modulus (E) (psi)	66,300
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-008O9
 Boring:
 B-40
 Date:
 9/23/2016

 Client:
 GRI
 Sample:
 R-7
 By:
 PJ

Project Name: Port of Coos Bay Channel Modification Project Depth,ft.: 28 Checked: DC


Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

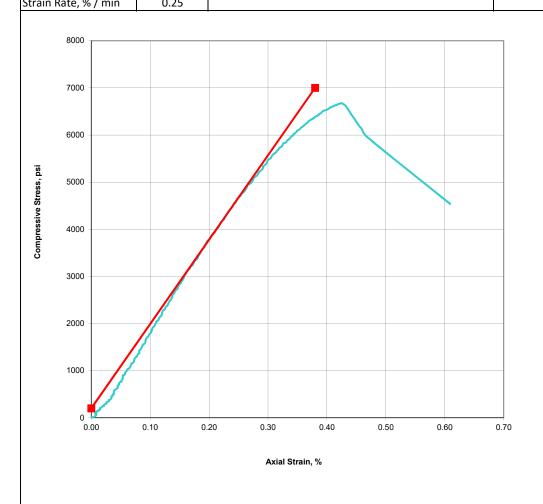
Sample Height, in.	5.05		
Sample Diameter, in.	2.37	Unconfined Compressive Strength	465
Height / Diameter	2.1	(psi)	400
Sample Area, in ²	4.40	(631)	
Wet Density, pcf	132.4		
Dry Density, pcf	111.3	Youngle Medulus (F) (noi)	00 000
Moisture Content, %	19.0	Young's Modulus (E) (psi)	88,900
Strain Rate % / min	0.25	1	

 CTL Job No.:
 823-010A1
 Boring: UB-1
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-1
 By: PJ

Project Name: Project Name: Modification Project

Modification Project Depth,ft.: 48.5 Checked: DC


Project No.: 5128 T2.021

Visual Description: Olive Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

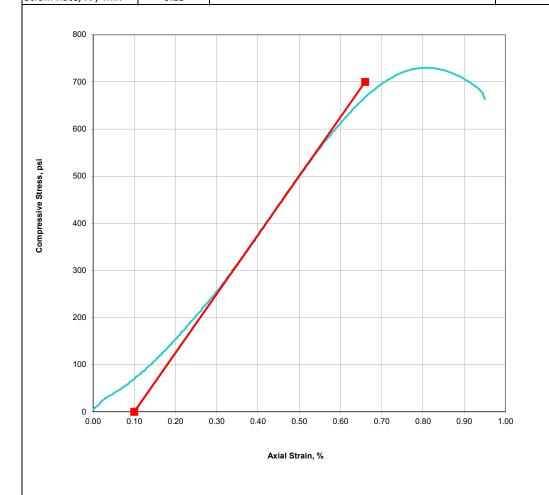
Sample Height, in.	4.66		
Sample Diameter, in.	2.23	Unconfined Compressive Strength	6672
Height / Diameter	2.1	(psi)	6673
Sample Area, in ²	3.91	(621)	
Wet Density, pcf	153.6		
Dry Density, pcf	132.1	Vounde Modulus (E) (noi)	4 700 000
Moisture Content, %	16.3	Young's Modulus (E) (psi)	1,790,000
Strain Rate % / min	0.25		

 CTL Job No.:
 823-010A3
 Boring: UB-1
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-4
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project Depth,ft.: 60 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

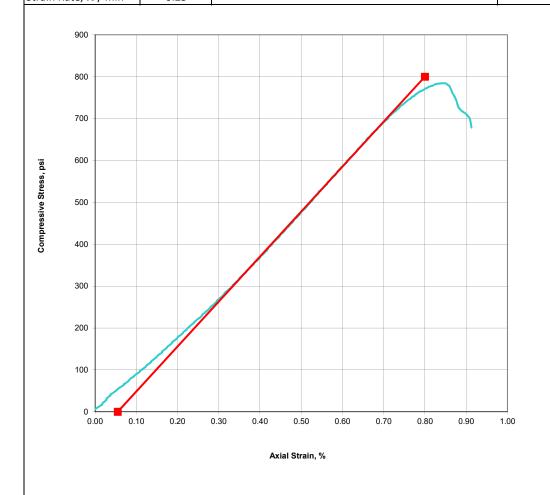
Sample Height, in.	5.02		
Sample Diameter, in.	2.38	Unconfined Compressive Strength	720
Height / Diameter	2.1	(psi)	730
Sample Area, in ²	4.45	(691)	
Wet Density, pcf	135.5		
Dry Density, pcf	115.8	Voundle Medulus (E) (noi)	425 000
Moisture Content, %	17.0	Young's Modulus (E) (psi)	125,000
Strain Rate, % / min	0.25	1	

 CTL Job No.:
 823-010A4
 Boring: UB-1
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-5
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project Depth,ft.: 67 Checked: DC


Project No.: 5128 T2.021

Visual Description: Olive Brown Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.03		
Sample Diameter, in.	2.32	Unconfined Compressive Strength	704
Height / Diameter	2.2	(psi)	784
Sample Area, in ²	4.21	(691)	
Wet Density, pcf	135.4		
Dry Density, pcf	115.5	Voundle Medulus (E) (noi)	407 400
Moisture Content, %	17.2	Young's Modulus (E) (psi)	107,400
Strain Rate, % / min	0.25	1	

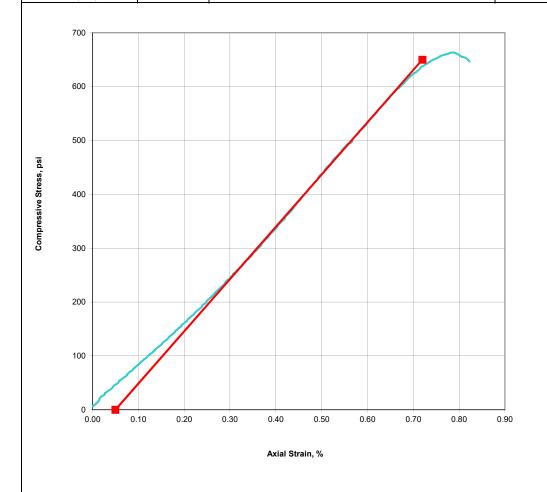
 CTL Job No.:
 823-010A5
 Boring: UB-1
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-6
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 71 Checked: DC


Project No.: 5128 T2.021

Visual Description: Olive Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	4.79		
Sample Diameter, in.	2.30	Unconfined Compressive Strength	663
Height / Diameter	2.1	(psi)	003
Sample Area, in ²	4.15	(631)	
Wet Density, pcf	135.3		
Dry Density, pcf	115.8	Voundle Medulus (E) (noi)	07.000
Moisture Content, %	16.8	Young's Modulus (E) (psi)	97,000
Strain Rate, % / min	0.25		

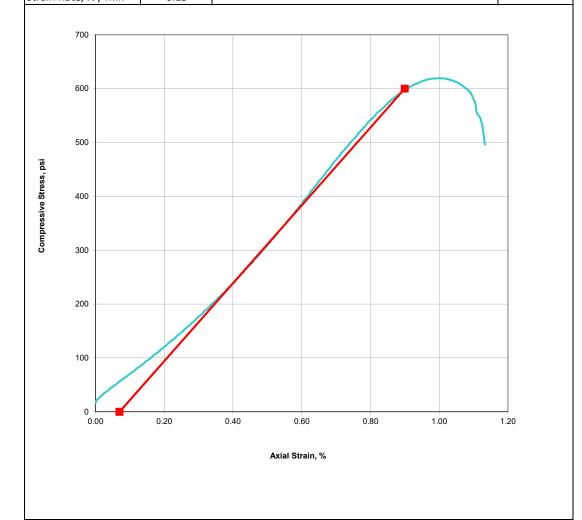
 CTL Job No.:
 823-010A6
 Boring: UB-1
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-7
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 77 Checked: DC


Project No.: 5128 T2.021

Visual Description: Olive Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.08		
Sample Diameter, in.	2.26	Unconfined Compressive Strength	640
Height / Diameter	2.2	(psi)	619
Sample Area, in ²	4.01	(691)	
Wet Density, pcf	135.7		
Dry Density, pcf	115.8	Voundle Medulus (E) (noi)	72 200
Moisture Content, %	17.2	Young's Modulus (E) (psi)	72,300
Strain Rate, % / min	0.25		

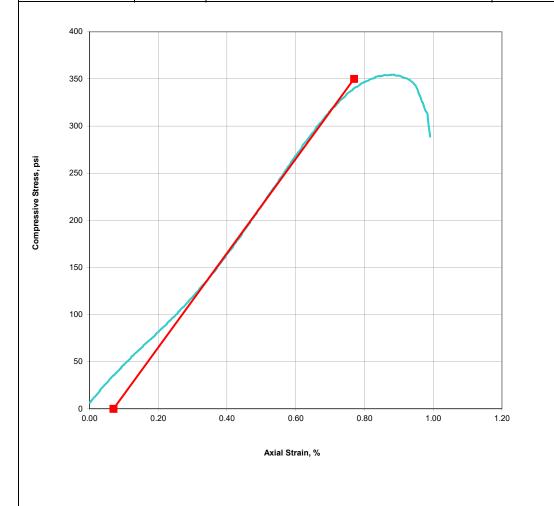
 CTL Job No.:
 823-010B1
 Boring: UB-2
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 46 Checked: DC


Project No.: 5128 T2.021

Visual Description: Dark Olive Brown Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in. Sample Diameter, in.	5.10 2.26	Unconfined Compressive Strength	355
Height / Diameter Sample Area, in ²	2.3 4.01	(psi)	
Wet Density, pcf	135.3		
Dry Density, pcf	114.9	Voungle Medulus (E) (noi)	E0 000
Moisture Content, %	17.8	Young's Modulus (E) (psi)	50,000
Strain Rate, % / min	0.25		

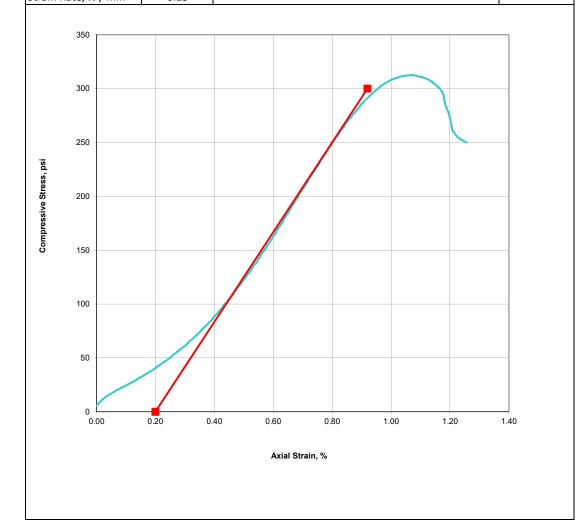
 CTL Job No.:
 823-010B2
 Boring: UB-2
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-3
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 50 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	4.91		
Sample Diameter, in.	2.31	Unconfined Compressive Strength	312
Height / Diameter	2.1	(psi)	312
Sample Area, in ²	4.19	(691)	
Wet Density, pcf	136.0		
Dry Density, pcf	116.6	Voundle Medulus (E) (noi)	44 700
Moisture Content, %	16.6	Young's Modulus (E) (psi)	41,700
Strain Rate, % / min	0.25	1	

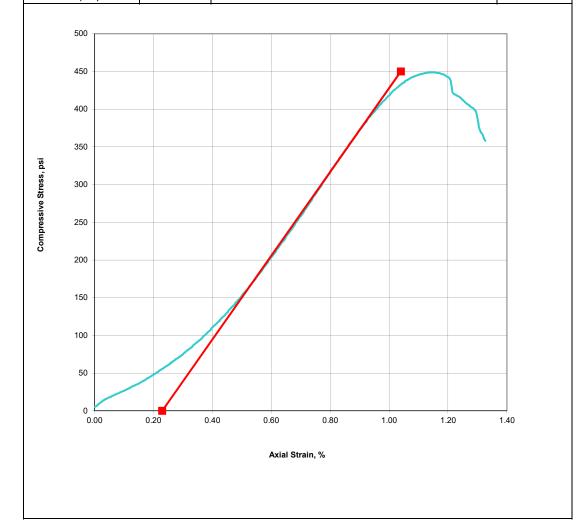
 CTL Job No.:
 823-010B3
 Boring: UB-2
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-4
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 56 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.04		
Sample Diameter, in.	2.32	Unconfined Compressive Strength	449
Height / Diameter	2.2	(psi)	449
Sample Area, in ²	4.22	(þ91)	
Wet Density, pcf	135.7		
Dry Density, pcf	115.1	Voundle Medulus (E) (noi)	EE 600
Moisture Content, %	17.9	Young's Modulus (E) (psi)	55,600
Strain Rate, % / min	0.25		

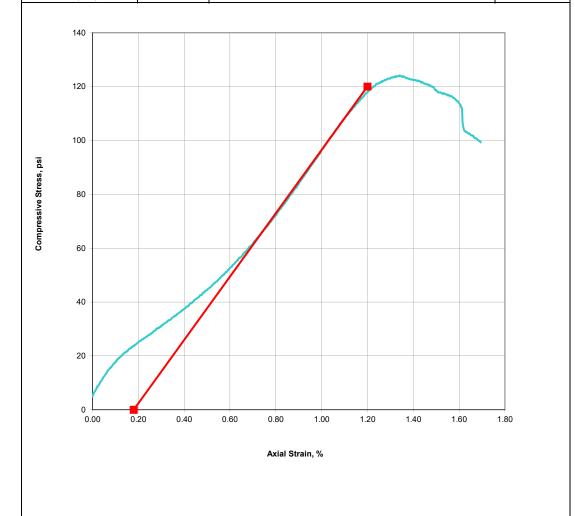
 CTL Job No.:
 823-010B4
 Boring: UB-2
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-5
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 63 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.06		
Sample Diameter, in.	2.35	Unconfined Compressive Strength	124
Height / Diameter	2.2	(psi)	124
Sample Area, in ²	4.32	(631)	
Wet Density, pcf	135.9		
Dry Density, pcf	114.8	Voung's Madulus (E) (noi)	44 000
Moisture Content, %	18.4	Young's Modulus (E) (psi)	11,800
Strain Rate, % / min	0.25		

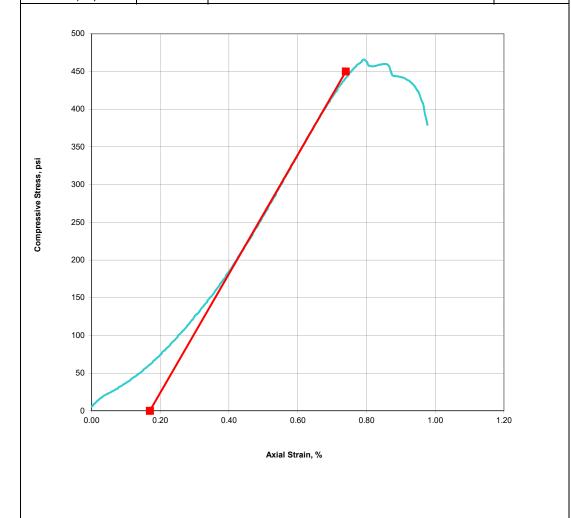
 CTL Job No.:
 823-010B5
 Boring: UB-2
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-6
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 65 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

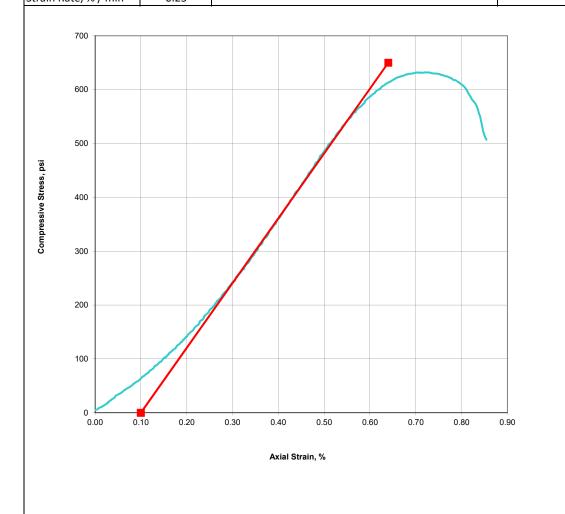
Sample Height, in.	5.07		
Sample Diameter, in.	2.30	Unconfined Compressive Strength	466
Height / Diameter	2.2	(psi)	466
Sample Area, in ²	4.14	(691)	
Wet Density, pcf	136.0		
Dry Density, pcf	116.8	Voundle Medulus (E) (noi)	70 000
Moisture Content, %	16.5	Young's Modulus (E) (psi)	78,900
Strain Rate, % / min	0.24	1	

 CTL Job No.:
 823-010B6
 Boring: UB-2
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-7
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project Depth,ft.: 72 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in. Sample Diameter, in.	5.05 2.31	Unconfined Compressive Strength	
Height / Diameter	2.31	(psi)	632
Sample Area, in ²	4.18	(psi)	
Wet Density, pcf	140.8		
Dry Density, pcf	123.4	Vound's Madulus (E) (noi)	120,400
Moisture Content, %	14.2	Young's Modulus (E) (psi)	120,400
Strain Rate, % / min	0.25		

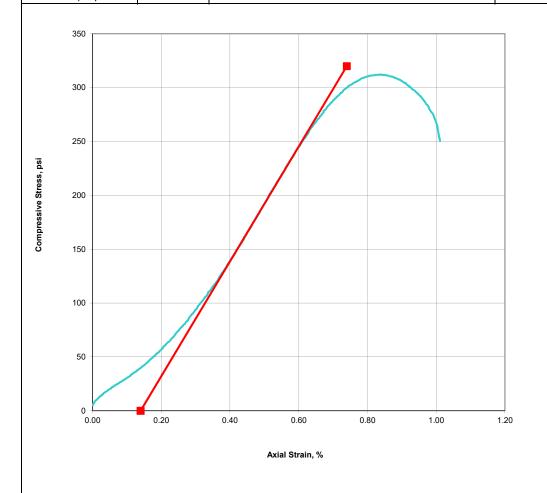
 CTL Job No.:
 823-010C1
 Boring: UB-3
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 35.5 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.19		
Sample Diameter, in.	2.19	Unconfined Compressive Strength	312
Height / Diameter	2.4	(psi)	312
Sample Area, in ²	3.76	(Þ31)	
Wet Density, pcf	130.6		
Dry Density, pcf	111.0	Voung's Madulus (E) (noi)	E2 200
Moisture Content, %	17.7	Young's Modulus (E) (psi)	53,300
Strain Rate, % / min	0.25		

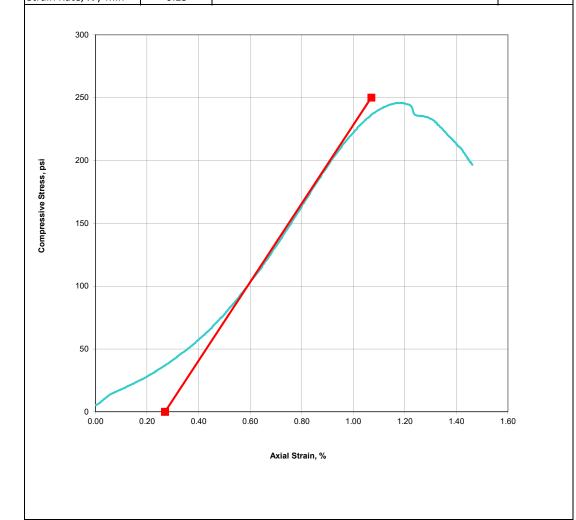
 CTL Job No.:
 823-010C2
 Boring: UB-3
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-3
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 40 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	4.83		
Sample Diameter, in.	2.25	Unconfined Compressive Strength	246
Height / Diameter	2.1	(psi)	246
Sample Area, in ²	3.98	(691)	
Wet Density, pcf	131.2		
Dry Density, pcf	111.3	Voundle Medulus (E) (noi)	24 200
Moisture Content, %	17.9	Young's Modulus (E) (psi)	31,300
Strain Rate, % / min	0.25	1	

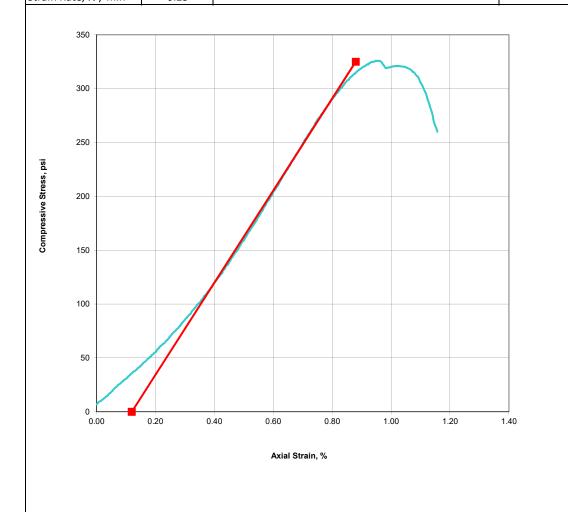
 CTL Job No.:
 823-010C3
 Boring: UB-3
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-6
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 55 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.07		
Sample Diameter, in.	2.23	Unconfined Compressive Strength	226
Height / Diameter	2.3	(psi)	326
Sample Area, in ²	3.92	(psi)	
Wet Density, pcf	136.1		
Dry Density, pcf	118.0	Voundle Medulus (E) (noi)	42 900
Moisture Content, %	15.3	Young's Modulus (E) (psi)	42,800
Strain Rate, % / min	0.25		

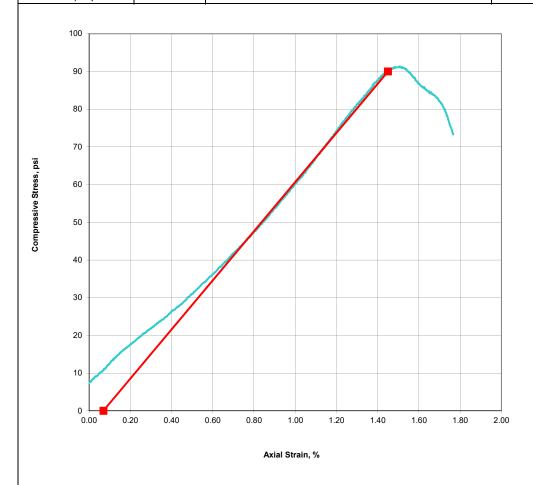
 CTL Job No.:
 823-010C4
 Boring: UB-3
 Date: 2/14/2017

 Client:
 GRI
 Sample: R-7
 By: PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 62 Checked: DC


Project No.: 5128 T2.021

Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Sample Height, in.	5.17		
Sample Diameter, in.	2.32	Unconfined Compressive Strength	04
Height / Diameter	2.2	(psi)	91
Sample Area, in ²	4.21	(þ91)	
Wet Density, pcf	131.9		
Dry Density, pcf	112.4	Voundle Medulus (E) (noi)	C 500
Moisture Content, %	17.3	Young's Modulus (E) (psi)	6,500
Strain Rate, % / min	0.25		

 CTL Job No.:
 823-010C5
 Boring:
 UB-3
 Date:
 2/14/2017

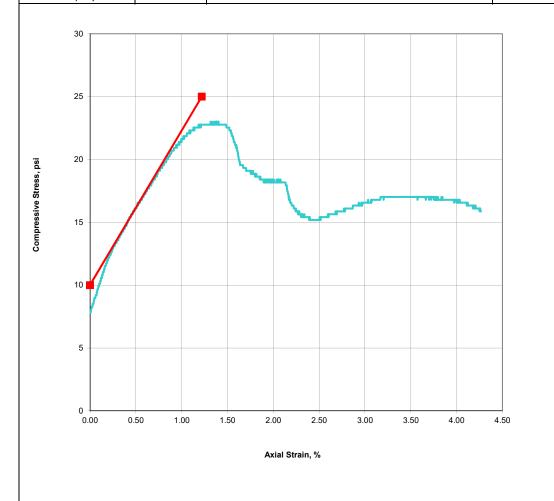
 Client:
 GRI
 Sample:
 R-8
 By:
 PJ

Project Name: Port of Coos Bay Channel

Modification Project

Modification Project Depth,ft.: 66 Checked: DC

Project No.: 5128 T2.021


Visual Description: Gray Rock

Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Remarks: Some pre-test fractures were observed.

Sample Height, in.	4.97		
Sample Diameter, in.	2.35	Unconfined Compressive Strength	22
Height / Diameter	2.1	(psi)	23
Sample Area, in ²	4.35	(691)	
Wet Density, pcf	131.9		
Dry Density, pcf	111.6	Voundle Medulus (E) (noi)	4 200
Moisture Content, %	18.2	Young's Modulus (E) (psi)	1,200
Strain Rate, % / min	0.26	1	

Report No: UCS:07023180-1-S1

Issue No: 1

Unconfined Compressive Strength

Client: GRI CC

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S1 **Date Sampled**: 12/11/2023

Sampling Method:

Source: Material:

Specification:

Location: B13-23, R1, 15.3-15.9
Tested By: Evans Lineweaver

Test Results

Date Tested:

ASTM D 2166

Unconfined Compressive

36.8

Strength (tons/ft²):

Shear Strength (tons/ft²): 18.4

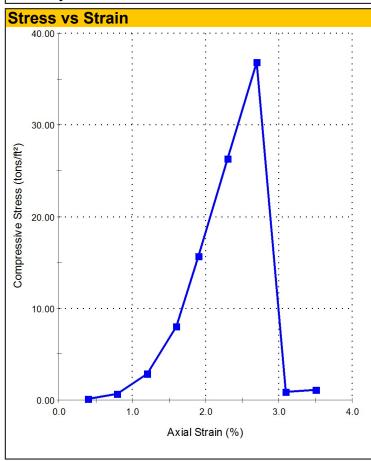
1/4/2024

Average Rate Strain to

0.4

Failure (%):

Strain at Failure (%): 2.7 Average Height (in.): 5.2 Average Diameter (in.): 2.4


Height-Diameter Ratio: 2.2
Initial Dry Density (Ib/ft³): 119.6

Initial Water Content (%):

Water Content Determined: After Shear
Water Content Taken From: Entire Specimen

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Fax: (503) 289-1918

Report No: UCS:07023180-1-S2

Issue No: 1

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

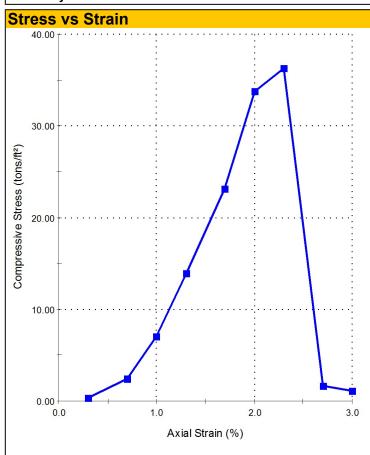
Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S2

Sampling Method:

Source:


Specification:

Location: B13-23, R1, 17-17.9 Tested By: **Evans Lineweaver**

Date Sampled:

Material:

Date Tested: 1/4/2024

Test Results

ASTM D 2166

Unconfined Compressive

36.3

Strength (tons/ft2):

18.1

Shear Strength (tons/ft²): Average Rate Strain to

0.3

Failure (%):

Strain at Failure (%):

2.3 6.0

Average Height (in.): Average Diameter (in.):

2.4

Height-Diameter Ratio: 2.5 Initial Dry Density (lb/ft³): 120.5

Initial Water Content (%):

Water Content Determined: After Shear

Water Content Taken From:

Entire Specimen

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Report No: UCS:07023180-1-S3

Issue No: 1

Unconfined Compressive Strength

Client: GRI CO

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

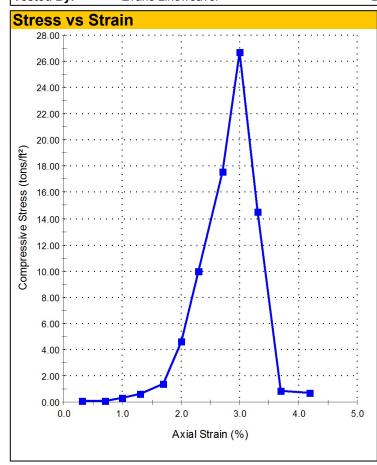
Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S3


Sampling Method:

Source: Material:

Specification:

Location: B13-23, R1, 17.9-18.5 Tested By: Evans Lineweaver

Date Tested: 1/4/2024

Test Results ASTM D 2166 Unconfined Compressive 26.7

Strength (tons/ft²):

Shear Strength (tons/ft²): 13.4 Average Rate Strain to 0.3

Failure (%):

Date Sampled:

Strain at Failure (%):3.0Average Height (in.):6.0Average Diameter (in.):2.4Height-Diameter Ratio:2.5Initial Dry Density (lb/ft³):118.8

Initial Water Content (%):

Water Content Determined: After Shear
Water Content Taken From: Entire Specimen

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Report No: UCS:07023180-1-S4

Issue No: 1

Unconfined Compressive Strength

Client: GRI CC

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S4 Date Sampled:

Sampling Method:

Source: Material:

Specification:

Location: B13-23, R1, 18.5-19.0 Evans Lineweaver

Test Results

Date Tested:

ASTM D 2166

Unconfined Compressive

1/4/2024

34.0

Strength (tons/ft²):

17.0

Shear Strength (tons/ft²): Average Rate Strain to

0.4

Failure (%):

Strain at Failure (%):

2.4

Average Height (in.):

5.8

Average Diameter (in.): Height-Diameter Ratio:

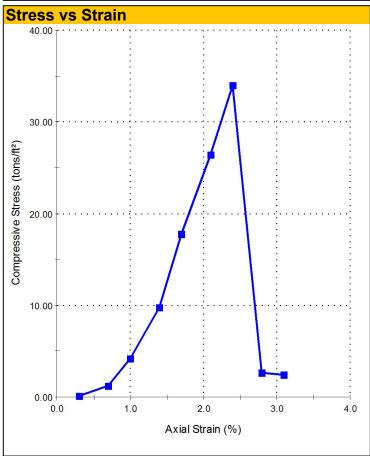
2.4 2.4 118.5

Initial Dry Density (lb/ft³):

Initial Water Content (%):

Water Content Determined: After Shear

Water Content Taken From:


Entire Specimen

Liquid Limit:

Plastic Limit:

Preparation Method:

Undisturbed Specimens

Report No: UCS:07023180-1-S5

Issue No: 1

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, Fax: (503) 289-1918 except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of **Unconfined Compressive Strength** engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Client: 16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

Sample Details

Sample ID: 07023180-1-S5 **Date Sampled:**

Sampling Method:

Source: Material:

Specification:

Location: B13-23, R1, 19.0-19.7 Tested By: **Evans Lineweaver**

Test Results

ASTM D 2166

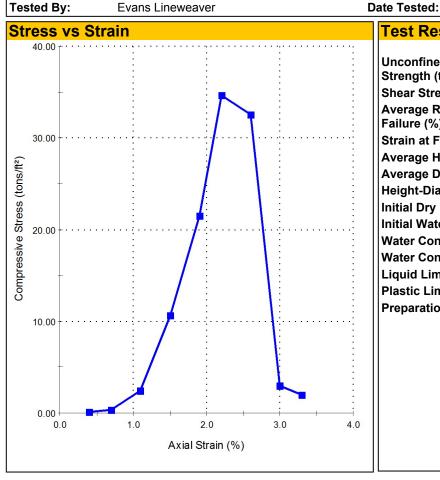
Unconfined Compressive 34.6

Strength (tons/ft2):

Shear Strength (tons/ft²): 17.3 Average Rate Strain to 0.4

1/4/2024

Failure (%):


Strain at Failure (%): 2.2 Average Height (in.): 5.4 Average Diameter (in.): 2.4 **Height-Diameter Ratio:** 2.3 Initial Dry Density (lb/ft³): 119.4

Initial Water Content (%):

Water Content Determined: After Shear Water Content Taken From: **Entire Specimen**

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Fax: (503) 289-1918

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

Report No: UCS:07023180-1-S6

Issue No: 1

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S6 **Date Sampled:**

Sampling Method:

Source: Material:

Specification:

Location: B13-23, R2, 20.3-20.8 Tested By: **Evans Lineweaver**

Test Results

ASTM D 2166

Unconfined Compressive

77.2

Strength (tons/ft2):

38.6

Shear Strength (tons/ft²): Average Rate Strain to

0.4

Failure (%):

Strain at Failure (%):

2.5

Average Height (in.): Average Diameter (in.): 5.7 2.3

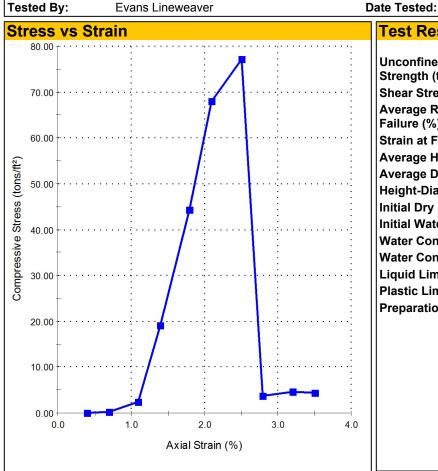
Height-Diameter Ratio:

2.4 120.3

Initial Dry Density (lb/ft³): Initial Water Content (%):

Water Content Determined: After Shear

1/4/2024


Water Content Taken From:

Entire Specimen

Liquid Limit: Plastic Limit:

Preparation Method:

Undisturbed Specimens

Report No: UCS:07023180-1-S7

Issue No: 1

Unconfined Compressive Strength

Client: GRI CC

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

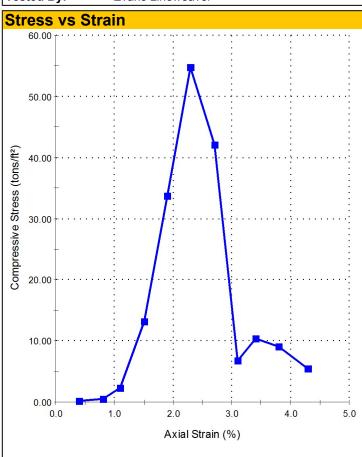
Sample ID: 07023180-1-S7

Sampling Method:

Source:

Specification:

Location: Tested By:


Evans Lineweaver

B13-23, R2, 21.6-22.1

Date Sampled:

Material:

Date Tested: 1/4/2024

Test Results

ASTM D 2166

Unconfined Compressive

54.8

Strength (tons/ft²): Shear Strength (tons/ft²):

27.4

Average Rate Strain to

0.4

Failure (%):

Strain at Failure (%):

2.3

Average Height (in.):
Average Diameter (in.):

5.2 2.4

Height-Diameter Ratio:

2.2 118.7

Initial Dry Density (lb/ft³):

Initial Water Content (%):

Water Content Determined: After Shear

Water Content Taken From:

Entire Specimen

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Report No: UCS:07023180-1-S8

Issue No: 1

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

Sample Details

Sample ID: 07023180-1-S8 **Date Sampled:**

Sampling Method:

Source: Material:

Specification:

Location: B13-23, R2, 22.9-23.6 Tested By: **Evans Lineweaver**

Test Results

ASTM D 2166

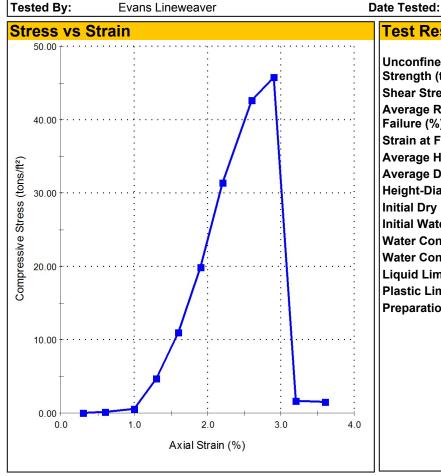
Unconfined Compressive 45.8

1/4/2024

Strength (tons/ft2):

Shear Strength (tons/ft²): 22.9 Average Rate Strain to 0.3

Failure (%):


Strain at Failure (%): 2.9 Average Height (in.): 6.2 Average Diameter (in.): 2.4 **Height-Diameter Ratio:** 2.6 Initial Dry Density (lb/ft³): 120.0

Initial Water Content (%):

Water Content Determined: After Shear Water Content Taken From: **Entire Specimen**

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Report No: UCS:07023180-1-S9

Issue No: 1

Unconfined Compressive Strength

Client: GRI

CC

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

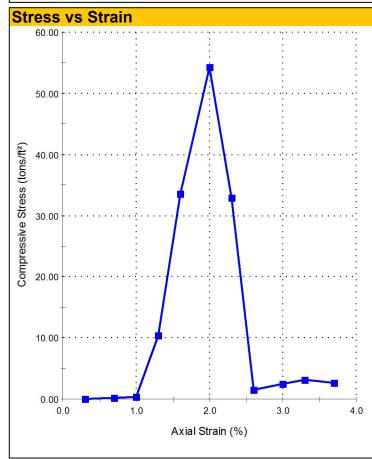
Sample Details

Sample ID: 07023180-1-S9

180-1-S9 Date Sampled:

Sampling Method:

Material:


Specification:

Source:

Location: B14-23, R5, 8.6-9.5

Tested By: Evans Lineweaver

Date Tested: 1/4/2024

Test Results

ASTM D 2166

Unconfined Compressive

54.2

Strength (tons/ft²):

27.1

2.0

Shear Strength (tons/ft²): Average Rate Strain to

0.3

Failure (%):

Strain at Failure (%):

Average Height (in.): 6.1 Average Diameter (in.): 2.4

Height-Diameter Ratio: 2.6
Initial Dry Density (lb/ft³): 124.4

Initial Water Content (%):

Water Content Determined: After Shear

Water Content Taken From: Entire Specimen

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Report No: UCS:07023180-1-S10

Issue No: 1

Unconfined Compressive Strength

Client: GRI

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

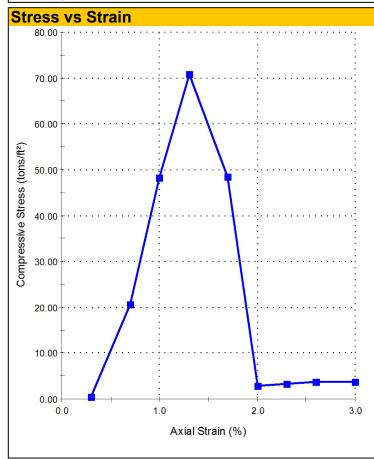
These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S10 Date Sampled:

Sampling Method:


Source: Material:

Specification:

Location: B14-23, R6, 12.1-12.9
Tested By: Evans Lineweaver

Date Tested: 1/4/2024

Toet Posulte

rest ivesuits		
	ASTM	D 2166
Unconfined Compressiv	'e	70.8
Strength (tons/ft²):		
Shear Strength (tons/ft²)):	35.4

Average Rate Strain to 0.3
Failure (%):
Strain at Failure (%): 1.3

Average Height (in.): 6.0

Average Diameter (in.): 2.4

Height-Diameter Ratio: 2.5

Initial Dry Density (Ib/ft³): 123.7

Initial Water Content (%):

Water Content Determined: After Shear
Water Content Taken From: Entire Specimen

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Report No: UCS:07023180-1-S11 Issue No: 1

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of

engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

Sample Details

Sample ID: 07023180-1-S11 **Date Sampled:**

Sampling Method:

Source: Material:

Specification:

Location: B14-23, R6, 13.6-14.4 Tested By: **Evans Lineweaver**

Date Tested: Test Results

1/4/2024

ASTM D 2166 Unconfined Compressive

Strength (tons/ft2):

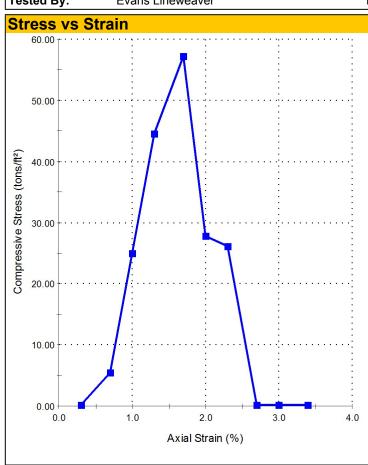
28.6

57.2

Shear Strength (tons/ft²): Average Rate Strain to 0.4

Failure (%):

Strain at Failure (%): 1.7


Average Height (in.): 6.0 Average Diameter (in.): 2.4 **Height-Diameter Ratio:** 2.5 Initial Dry Density (lb/ft³): 122.1

Initial Water Content (%):

Water Content Determined: After Shear Water Content Taken From: **Entire Specimen**

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Phone: (503) 289-177 Fax: (503) 289-1918

Unconfined Compressive Strength

Client: GRI CC

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

Report No: UCS:07023180-1-S12

Issue No: 1

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S12 Date Sampled:

Sampling Method:

Source: Material:

Specification:

Location: B16-23, R3, 13.1-14.4

Tested By: Evans Lineweaver

Test Results

Date Tested:

Unconfined Compressive

1/4/2024

ASTM D 2166 /e 75.9

Strength (tons/ft²):

Shear Strength (tons/ft²): 38.0

Average Rate Strain to

0.3

Failure (%):

Strain at Failure (%):

1.6

Average Height (in.):
Average Diameter (in.):

6.1 2.3

Height-Diameter Ratio:

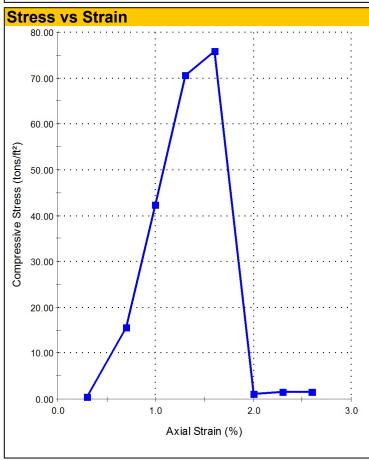
2.7 122.5

Initial Dry Density (lb/ft³):

Initial Water Content (%):

Water Content Determined: After Shear

Water Content Taken From:


Entire Specimen

Liquid Limit:

Plastic Limit:

Preparation Method:

Undisturbed Specimens

Report No: UCS:07023180-1-S13

Issue No: 1

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

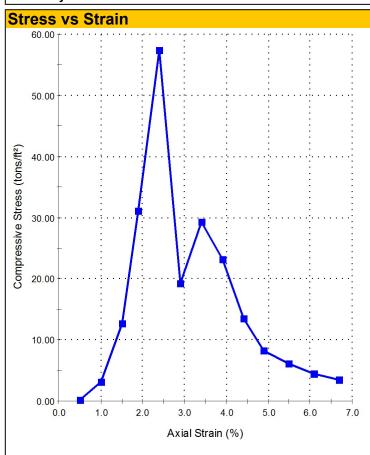
Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S13

Sampling Method:

Source:


Specification:

Location: B16-23, R1, 7.8-8.3 Tested By: **Evans Lineweaver**

Date Sampled:

Material:

Date Tested: 1/4/2024

Test Results

ASTM D 2166

Unconfined Compressive

57.4

Strength (tons/ft2):

28.7

Shear Strength (tons/ft²): Average Rate Strain to

0.5

Failure (%):

Strain at Failure (%): 2.4

Average Height (in.): Average Diameter (in.):

4.1 2.3

Height-Diameter Ratio:

1.8

Initial Dry Density (lb/ft³): 109.6

Initial Water Content (%):

Water Content Determined: After Shear

Water Content Taken From: **Entire Specimen**

Liquid Limit:

Plastic Limit:

Preparation Method: Undisturbed Specimens

Report No: UCS:07023180-1-S14

Issue No: 1

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

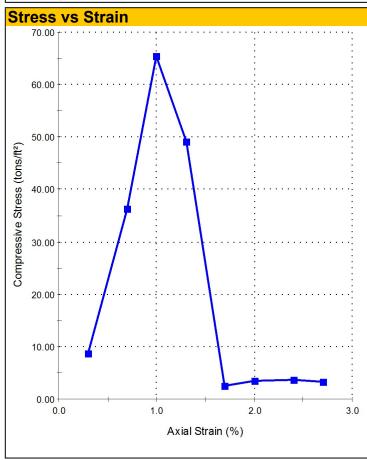
Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S14 **Date Sampled:**

Sampling Method: Source:

Material:


Specification:

Location:

Tested By:

B16-23, R3, 14.5-15.3

Date Tested: Evans Lineweaver 1/4/2024

Test Results

ASTM D 2166

Unconfined Compressive

65.4

Strength (tons/ft2):

32.7

Shear Strength (tons/ft²): Average Rate Strain to

0.4

115.2

Failure (%):

Strain at Failure (%): 1.0

Average Height (in.): 6.0

Average Diameter (in.): 2.2 **Height-Diameter Ratio:** 2.7

Initial Dry Density (lb/ft³): Initial Water Content (%):

Water Content Determined: After Shear

Water Content Taken From: **Entire Specimen**

Liquid Limit:

Plastic Limit:

Preparation Method: Undisturbed Specimens

Professional Service Industries, Inc. 6032 N. Cutter Circle, Suite 480 Portland, OR 97217 CCB No. 176269 Phone: (503) 289-1778 Fax: (503) 289-1918

Report No: UCS:07023180-1-S15

Issue No: 1

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S15 **Date Sampled:**

Sampling Method:

Source: Material:

Specification:

Location: B16-23, R4, 18-18.7 Tested By: **Evans Lineweaver**

Test Results

ASTM D 2166

Unconfined Compressive

71.4

Strength (tons/ft2):

35.7

Shear Strength (tons/ft²): Average Rate Strain to

0.4

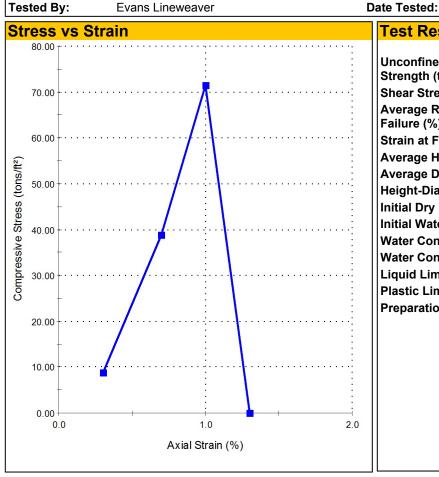
Failure (%):

Strain at Failure (%): 1.0

1/4/2024

Average Height (in.): 5.9 Average Diameter (in.): 2.2

Height-Diameter Ratio: 2.7 Initial Dry Density (lb/ft³): 116.9


Initial Water Content (%):

Water Content Determined: After Shear **Entire Specimen**

Water Content Taken From:

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Comments

Professional Service Industries, Inc. 6032 N. Cutter Circle, Suite 480 Portland, OR 97217 CCB No. 176269 Phone: (503) 289-1778

Fax: (503) 289-1918

Unconfined Compressive Strength

Client:

16520 SW UPPER BOONES FERRY

RD, SUITE 100 TIGARD, OR 97224

Project: GRI ON CALL TESTING

Report No: UCS:07023180-1-S16

Issue No: 1

These test results apply only to the specific locations and materials noted and may not represent any other locations or elevations. This report may not be reproduced, except in full, without written permission by Professional Service Industries, Inc. If a non-compliance appears on this report, to the extent that the reported non-compliance impacts the project, the resolution is outside the PSI scope of engagement. Tests and inspections are considered to be simple acceptance criteria

Approved Signatory: Warren McElhaney (Laboratory Supervisor)

Sample Details

Sample ID: 07023180-1-S16 **Date Sampled:**

Sampling Method:

Source: Material:

Specification:

Location: B16-23, R7, 18.6-19.5 Tested By: **Evans Lineweaver**

Test Results

Date Tested:

ASTM D 2166

Unconfined Compressive 52.9

Strength (tons/ft2):

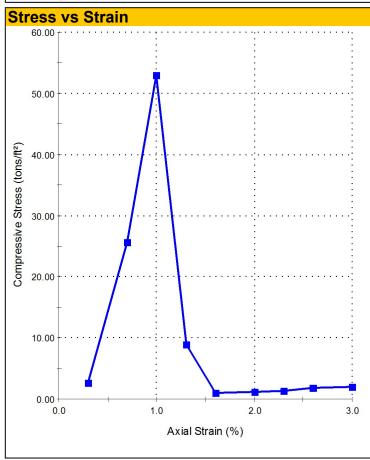
Shear Strength (tons/ft²): 26.5 0.4

1/4/2024

Average Rate Strain to

Failure (%):

Strain at Failure (%): 1.0 Average Height (in.): 6.1 Average Diameter (in.): 2.4 **Height-Diameter Ratio:** 2.6


Initial Dry Density (lb/ft³): 123.3

Initial Water Content (%):

Water Content Determined: After Shear Water Content Taken From: **Entire Specimen**

Liquid Limit: Plastic Limit:

Preparation Method: Undisturbed Specimens

Comments

CTL Job No:			Project No.:	5128		
Client:			Date:	9/28/2016		
	Port of Coos Bay Chan B-15	nel Modification Project	Ву:	PJ	1	
Boring: Sample:	R-15					
Depth, ft:	2					
Visual Description:	Gray Rock					
Test Type	Irregular Lump					
Test Type ID	4					
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None					
Deduling Aligie Nelative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
	SAN	IPLE DIMENSI	IONS		1	
Width Perpendicular to loading, W, mm	60.9					
Length Perpendicular to Loading, L, mm	32					
Diameter Parallel to Loading, D, mm	55.6					
Diameter at Failure, D', mm	49					
	S [.]	TRENGTH DA	TA			
Peak Load, P, kN	16.393					
Peak Load, P, lbs	3685.3					
Uncorr. Pt. Load Strength Index,I _s , MPa	4.315					
Uncorr. Pt. Load Strength Index,I _s , psi	625.8					
Size Correction Factor, F	1.10					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	4.74					
Corr. Pt. Load Strength Index,I _{s(50)} , psi						
	MOIST	URE CONTEN	T DATA		1	
Moisture Condition of Specimen	As Received					
Pan No.						
Pan wt. (g)	20.57					
Total wet wt. (g)	348.87					
Total dry wt (g)	330.87					
Moisture Content, %	5.8		<u> </u>		<u> </u>	
Comments:						
genone.						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:	5128		•		
Client:			Date:	9/28/2016		•		
		nel Modification Project	By:	PJ	T			
Boring:	B-15	B-15	B-15					
Sample: Depth, ft:	R-2 5.5	R-2 5.5	R-2 5.5					
Visual Description:	Gray Rock	Gray Rock	Gray Rock					
Visual Description.	Glay Nock	Gray Nock	Gray Nock					
Test Type	Diametral	Diametral	Diametral					
Test Type ID	1	1	1					
Took Type ID	FOR A	NISOTROPIC	ROCK-		1			
	1017	14100110110	TOOK.					
Bedding Angle Relative to Axis	None	None	None					
222333.0	.,							
Loading Orientation Rel. to Bedding	N/A	N/A	N/A					
		PLE DIMENSI						
Width Perpendicular to loading, W, mm	60	60	60					
Length Perpendicular to Loading, L, mm	31	32	31					
Diameter Parallel to Loading, D, mm	60	60	60					
Diameter at Failure DI mm	EO	E0	EO					
Diameter at Failure, D', mm	58	58	58					
	<u> </u>	TRENGTH DA	IA			Ī		
Peak Load, P, kN	2.59	2.567	1.416					
Feak Loau, F, KN	2.39	2.307	1.410					
Peak Load, P, lbs	582.3	577.1	318.3					
		2,7,7,						
Uncorr. Pt. Load Strength Index,I _s , MPa	0.744	0.738	0.407					
Harris Bi Land Otana ath Indeed and	40= 0	40= 0						
Uncorr. Pt. Load Strength Index,I _s , psi	107.9	107.0	59.0					
	4.00	4.00	4.00					
Size Correction Factor, F	1.08	1.08	1.08					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.80	0.79	0.44					
· ·		55	<u> </u>					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	116	115	64	98				
3(30)/ 1		URE CONTEN						
	1410101	I SOUTH						
Moisture Condition of Specimen	As Received	As Received	As Received					
Pan No.								
Pan wt. (g)	20.49	20.49	20.49					
	00-0:	00-01						
Total wet wt. (g)	267.34	267.34	267.34					
Total dry wt (g)	237.92	237.92	237.92					
rotai dry Wt (g)	۷۵۱.۵۲	201.82	201.32					
Moisture Content, %	13.5	13.5	13.5					
molecule content, 70		<u> </u>			<u> </u>			
Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008			Project No.:	5128		
Client:			Date:	9/28/2016		
Project Name:	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ		
Boring:	B-15	B-15				
Sample:	R-3	R-3				
Depth, ft:	9.5	9.5				
Visual Description:	Gray Rock	Gray Rock				
Test Type	Diametral	Axial				
Test Type ID	1	2				
Test Type ID	FOR A	NISOTROPIC	BUCK.			
	FOR A	I	NOCK.			
Bedding Angle Relative to Axis	None	None				
Bedding / trigle / telative to / txis	None	None				
Loading Orientation Rel. to Bedding	N/A	N/A				
3	SAN	IPLE DIMENS	ONS		-	
Width Perpendicular to loading, W, mm	60	60				
Length Perpendicular to Loading, L, mm	32					
Diameter Parallel to Loading, D, mm	60					
Diameter Faraller to Loading, D, Tillin	00					
Diameter at Failure, D', mm	58	34				
		TRENGTH DA	TA		1	
Peak Load, P, kN	1.196	2.213				
Peak Load, P, lbs	268.9	497.5				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.344	0.852				
0	0.0	0.002				
Uncorr. Pt. Load Strength Index,I _s , psi	49.8	123.6				
Size Correction Factor, F	1.08	1.01				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.37	0.86				
Com. 1 t. Load Guongui maox, is(50), impa	0.07	0.00				
Corr. Pt. Load Strength Index,I _{s(50)} , psi	54	125				
, ,		URE CONTEN	T DATA		•	
Moisture Condition of Specimen	As Received	As Received				
Pan No.						
Pan wt. (g)	19.45	19.45				
1 an wt. (9)	13.43	13.43				
Total wet wt. (g)	205.25	205.25				
C,						
Total dry wt (g)	191.35	191.35				
Material Control	0.4					
Moisture Content, %	8.1	8.1				
		Invalid test. Did				
		not fail through				
		both points.				
Comments:						
OSIMITORIO.						
		1				
		Ī	ı I		Ī	4

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:	5128 9/28/2016					
	Client: _ Proiect Name:		nel Modification Project	Date: By:						
	Boring:	B-15	B-15	B-15	B-15	B-15	B-15			
	Sample:	R-4	R-4	R-4	R-4	R-4	R-4			
	Depth, ft:	15.5	15.5	15.5	15.5	15.5	15.5			
	Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
	Test Type	Diametral	Diametral	Diametral	Diametral	Diametral	Axial			
	Test Type ID	1 EOD A		1 POCK:	1	1	2			
FOR ANISOTROPIC ROCK:										
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None			
Loading Orienta	ation Rel. to Bedding	N/A	N/A IPLE DIMENSI	N/A	N/A	N/A	N/A			
Width Perpendicular	to loading, W, mm	60	60	60	60	60	60			
Length Perpendicula	ar to Loading, L, mm	31	33	34	32	31				
Diameter Paralle	I to Loading, D, mm	60	60	60	60	60				
Diamete	er at Failure, D', mm	57	57	57	57	57	31			
		<u> </u>	TRENGTH DA	IA						
	Peak Load, P, kN	1.359	1.432	1.43	1.262	1.746	1.215			
	Peak Load, P, lbs	305.5	321.9	321.5	283.7	392.5	273.1			
Uncorr. Pt. Load Strer	ngth Index,I _s , MPa	0.397	0.419	0.418	0.369	0.511	0.513			
Uncorr. Pt. Load Stre	ngth Index,I _s , psi	57.6	60.7	60.6	53.5	74.0	74.4			
Size Co	orrection Factor, F	1.07	1.07	1.07	1.07	1.07	0.99			
Corr. Pt. Load Strengt	h Index,I _{s(50)} , Mpa	0.43	0.45	0.45	0.40	0.55	0.51			
Corr. Pt. Load Strengt	th Index,I _{s(50)} , psi	62	65	65	57	79	74			
		MOIST	URE CONTEN	T DATA						
Moisture Co	ondition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
	Pan No.									
	Pan wt. (g)	21.65	21.65	21.65	21.65	21.65	21.65			
	Total wet wt. (g)	173.26	173.26	173.26	173.26	173.26	173.26			
	Total dry wt (g)	156.84	156.84	156.84	156.84	156.84	156.84			
М	oisture Content, %	12.1	12.1	12.1	12.1	12.1	12.1			
	Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128				
Client:			Date:	9/28/2016		- -		
Project Name: Boring:	Port of Coos Bay Chan B-15	nel Modification Project B-15	By: B-15	PJ	T	T		
Sample:	R-5	R-5	R-5					
Depth, ft:	18.5	18.5	18.5					
Visual Description:	Gray Rock	Gray Rock	Gray Rock					
	<u> </u>							
Test Type Test Type ID	Diametral 1	Diametral 1	Axial 2					
1001175015		NISOTROPIC			l			
B. I.E. A. I. B. I.E. I. A. I.								
Bedding Angle Relative to Axis	None	None	None					
Loading Orientation Rel. to Bedding		N/A	N/A					
SAMPLE DIMENSIONS								
Width Perpendicular to loading, W, mm	62	61	61					
Length Perpendicular to Loading, L, mm	32	31						
Diameter Parallel to Loading, D, mm	62	61						
Diameter at Failure, D', mm	57	57	31					
Biameter at Fallare, B., Tillin		TRENGTH DA						
Dook Load D kN	0.653	1	1 206					
Peak Load, P, kN	0.653	l l	1.306					
Peak Load, P, lbs	146.8	224.8	293.6					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.185	0.288	0.542					
Uncorr. Pt. Load Strength Index,I _s , psi	26.8	41.7	78.7					
oncom. I a Load offeright mack, is, par	20.0	71.7	70.7					
Size Correction Factor, F	1.08	1.08	0.99					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.20	0.31	0.54					
Corr. Pt. Load Strength Index,I _{s(50)} , psi		45	78					
Con. Ft. Load Strength index, is(50), psi		URE CONTEN						
	WOIST	OKE CONTEN						
Moisture Condition of Specimen	As Received	As Received	As Received					
Pan No.								
	00.04	00.04	22.24					
Pan wt. (g)	22.21	22.21	22.21					
Total wet wt. (g)	191.56	191.56	191.56					
Total dry wt (g)	179.05	179.05	179.05					
Moisture Content, %	8.0	8.0	8.0		1	1		
Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:			Date:	9/28/2016		
	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ		•
Boring:	B-15	B-15				
Sample:	R-5	R-5				
Depth, ft:	22.5	22.5				
Visual Description:						
visual Description:	Dark Gray Rock	Dark Gray Rock				
Test Type	Diametral	Diametral				
Test Type ID	1	1				
1001 1990 12	EOD A	NISOTROPIC	DUCK.			
	FOR A	MISOTROFIC	NOCK.		1	
Deddie e Arrela Dalatica ta Arria						
Bedding Angle Relative to Axis	None	None				
	N1/A	N1/A				
Loading Orientation Rel. to Bedding		N/A				
	SAN	IPLE DIMENSI	ONS			
Width Perpendicular to loading, W, mm	61	61				
Length Perpendicular to Loading, L, mm	33	31				
Diameter Parallel to Loading, D, mm	61	61				
Diameter at Failure, D', mm	59	58				
, ,		TRENGTH DA	ΓΔ		•	
Peak Load, P, kN	2.558	9.396				
1 oak zoda, i , kiv	2.000	0.000				
Peak Load, P, lbs	575.1	2112.3				
T can Load, I , Ibs	373.1	2112.0				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.711	2.656				
eneem a gear energy maez,,,g, m a	•					
Uncorr. Pt. Load Strength Index,I _s , psi	103.1	385.2				
oncom a zoda odonga macz, ig, po		000.2				
Size Correction Factor, F	1.09	1.08				
Size Correction Factor, F	1.09	1.00				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.77	2.87				
Con: 1 t. Lodd Ottorigin macx,1 _S (50), wpd	0.11	2.01				
Corr. Pt. Load Strength Index,I _{s(50)} , psi	112	416				
Cont. 1 t. Load Strength index, is(50), psi						
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received				
Pan No.						
Pan wt. (g)	20.03	20.03				
Total wet wt. (g)	199.95	199.95				
Total dry wt (g)	183.15	183.15				
Moisture Content, %	10.3	10.3				
7.1						
Comments:						
Comments.						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008		Project No.:	5128			
Client:			Date:	9/28/2016		•
		nel Modification Project	By:	PJ	î	
Boring:	B-21					
Sample: Depth, ft:	R-3 6.5					
Visual Description:	Very Dark					
rioddi 2000 ipiloli.	Brown Rock					
Test Type	Axial					
Test Type ID	2					
21		NISOTROPIC	ROCK:		•	
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
Edding Offentation Net. to Bedding		IPLE DIMENSI		IN/A	IN/A	19/75
	CAN					
Width Perpendicular to loading, W, mm	61					
Length Perpendicular to Loading, L, mm						
Length Perpendicular to Loading, L, Illin						
Diameter Parallel to Loading, D, mm						
Discussion of Fallows DI annual	07					
Diameter at Failure, D', mm	27 S '	<u> </u> TRENGTH DA ⁻	<u> </u> ΤΔ			
		IKEKOIII DA				
Peak Load, P, kN	0.512					
Peak Load, P, lbs	445.4	0.0	0.0	0.0	0.0	0.0
	115.1			0.0	0.0	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.244	Test ID??	Test ID??	Test ID??	Test ID??	Test ID??
Uncorr. Pt. Load Strength Index,I _s , psi	35.4	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Size Correction Factor, F	0.96	Test ID??	Test ID??	Test ID??	Test ID??	Test ID??
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.23	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Corr. Pt. Load Strength Index,I _{s(50)} , psi	34	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
(30), p-1		URE CONTEN				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan No.						
Pan wt. (g)	311.5					
Total wet wt. (g)	843.9					
Total dry wt (g)	722.6					
Moisture Content, %	29.5	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:			Date:	9/28/2016		•
	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ	1	
Boring: Sample:	B-21 R-5					
Depth, ft:	16					
Visual Description:	Very Dark					
•	Brown Rock					
Test Type	Diametral					
Test Type ID						
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None					
Deduing Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding						
	SAN	IPLE DIMENSI	ONS		-	-
Midtle Demondia dente le adire e M	64					
Width Perpendicular to loading, W, mm	61					
Length Perpendicular to Loading, L, mm	32					
Diameter Parallel to Loading, D, mm	61					
Diameter at Failure, D', mm	58					
		TRENGTH DA	ГА		ı	
Peak Load, P, kN	0.115					
Peak Load, P, lbs	25.9					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.033					
Uncorr. Pt. Load Strength Index,I _s , psi	4.7					
3, 73, 11						
Size Correction Factor, F	1.08					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.04					
Corr. Pt. Load Strength Index,I _{s(50)} , psi						
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Dossiyad					
Moisture Condition of Specimen	As Received					
Pan No.						
	04.50					
Pan wt. (g)	21.53					
Total wet wt. (g)	117.31					
Total dry wt (g)	96.7					
Moisture Content, %	27.4					
sistare content, 70	Invalid test. Did				<u> </u>	
	not fail through					
	both loading					
Comments:	points.					
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008			Project No.:	5128					
Client:			Date:	9/28/2016		•			
		nel Modification Project	By:	PJ	1				
Boring: Sample:	B-23 R-1	B-23 R-1							
Depth, ft:	6	6							
Visual Description:	Very Dark	Very Dark							
	Brown Rock	Brown Rock							
Test Type	Axial	Axial							
Test Type ID	2	2	DOCK:						
	FOR ANISOTROPIC ROCK:								
Bedding Angle Relative to Axis	None	None							
Loading Orientation Rel. to Bedding	N/A	N/A	0.110		<u> </u>				
	SAMPLE DIMENSIONS								
Width Perpendicular to loading, W, mm	61	60							
,									
Length Perpendicular to Loading, L, mm									
Diameter Parallel to Loading, D, mm									
Diameter Farance to Loading, D, Tilling									
Diameter at Failure, D', mm	27	30							
	S'	TRENGTH DA	TA		•				
Peak Load, P, kN	0.16	0.046							
r can Load, r , niv	0.10	0.040							
Peak Load, P, lbs	36.0	10.3							
Uncorr. Pt. Load Strength Index,I _s , MPa	0.076	0.020							
Uncorr. Pt. Load Strength Index,I _s , psi	11.1	2.9							
Size Correction Factor, F	0.96	0.98							
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.07	0.02							
Corr. Pt. Load Strength Index,I _{s(50)} , psi	11	3							
Gotti ii Lodd Otlongtii iiidox,is(50), poi		URE CONTEN	LI T DATA						
	1110101								
Moisture Condition of Specimen	As Received	As Received							
Pan No.									
Fall IVO.									
Pan wt. (g)	19.88	19.88							
T-4-144.(-)	470.44	470.44							
Total wet wt. (g)	179.11	179.11							
Total dry wt (g)	145.6	145.6							
Moisture Content, %	26.7	26.7							
Comments:									
		ī			1				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008		Project No.:	5128						
Client:			Date:	9/28/2016					
		nel Modification Project	By:	PJ	•				
Boring:	B-23	B-23							
Sample:	R-2 7	R-2 7							
Depth, ft: Visual Description:	Very Dark	Very Dark							
visual Description.	Brown Rock	Brown Rock							
	Brown reserv	Brown record							
- ·-	A : 1	A · I							
Test Type Test Type ID	Axial 2	Axial 2							
Test Type ID		NISOTROPIC	ROCK.		<u> </u>				
	TOKA	MICCINCI IC	itooit.						
Bedding Angle Relative to Axis	None	None							
Loading Orientation Rel. to Bedding	N/A	N/A	ONG						
	SAMPLE DIMENSIONS								
Width Perpendicular to loading, W, mm	54	60							
Length Perpendicular to Loading, L, mm									
Diameter Parallel to Loading, D, mm									
Diameter Farallel to Loading, D, Tillin									
Diameter at Failure, D', mm	34	36							
	S	TRENGTH DA	ΓΑ						
Deale Lead D IAN	0.445	4.04							
Peak Load, P, kN	0.145	1.34							
Peak Load, P, lbs	32.6	301.2							
Uncorr. Pt. Load Strength Index,I _s , MPa	0.062	0.487							
Officorr. Ft. Load Strength index,is, MFa	0.002	0.467							
Uncorr. Pt. Load Strength Index,I _s , psi	9.0	70.7							
Size Correction Factor, F	0.99	1.02							
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.06	0.50							
Corr. Pt. Load Strength Index,I _{S(50)} , psi		72							
	MOIST	URE CONTEN	T DATA		<u> </u>				
Moisture Condition of Specimen	As Received	As Received							
Molecula Condition of Opcomen	, 10 1 10001100	, 10 . 10001404			1				
Pan No.									
Don ut (a)	20.44	20.44							
Pan wt. (g)	20.44	20.44							
Total wet wt. (g)	133.68	133.68							
Total dry wt (g)	110.3	110.3							
Moisture Content, %	26.0	26.0							
Comments:									
Comments.									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

		823-008		Project No.:			-
	lient: lame:	GRI Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		-
	oring:		B-24	B-24	B-24	B-24	B-24
Sa	mple:	R-1	R-1	R-1	R-1	R-1	R-1
	th, ft:		4	4	4	4	4
Visual Descri	otion:	Very Dark Bluish Gray Rock					
	Туре		Diametral	Diametral	Axial	Axial	Axial
Test Ty	/pe ID		1	1	2	2	2
		FOR A	NISOTROPIC	ROCK:		1	1
Bedding Angle Relative t	o Axis	None	None	None	None	None	None
Loading Orientation Rel. to Be	dding		N/A IPLE DIMENS	N/A	N/A	N/A	N/A
		SAIV	ILE DIMENS	ONO 		<u> </u>	
Width Perpendicular to loading, W	mm	61	60	60	60	60	60
Length Perpendicular to Loading,	_, mm		33	39			
Diameter Parallel to Loading, D	, mm		60	60			
Diameter at Failure, D	, mm		58 TRENGTH DA	58 T A	26	39	48
		<u></u>	I KENGIH DA				
Peak Load,	P, kN	0.423	0.108	0.361	0.211	0.224	0.382
Peak Load,	P, lbs	95.1	24.3	81.2	47.4	50.4	85.9
Uncorr. Pt. Load Strength Index,I _s ,	MPa	0.195	0.031	0.104	0.106	0.075	0.104
Uncorr. Pt. Load Strength Index,I	_s , psi	28.2	4.5	15.0	15.4	10.9	15.1
Size Correction Fac	tor, F	0.97	1.08	1.08	0.95	1.04	1.09
Corr. Pt. Load Strength Index,I _{s(50)}	Мра	0.19	0.03	0.11	0.10	0.08	0.11
Corr. Pt. Load Strength Index,I _{s(50}	₎ , psi		5	16	15	11	16
		MOIST	URE CONTEN	T DATA			
Moisture Condition of Spe	cimen	As Received					
Pa	an No.						
Pan	wt. (g)	22.67	22.67	22.67	22.67	22.67	22.67
Total wet	wt. (g)	132.21	132.21	132.21	132.21	132.21	132.21
Total dry	wt (g)	117.33	117.33	117.33	117.33	117.33	117.33
Moisture Conte	ent, %	15.7	15.7	15.7	15.7	15.7	15.7
Comr	nents:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			-		
	Client:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		-		
	Boring:	B-24	B-24	В-24	B-24	B-24	B-24		
	Sample:	R-2	R-2	R-2	R-2	R-2	R-2		
	Depth, ft:	6	6	6	6	6	6		
\	/isual Description:	Very Dark Bluish Gray Rock							
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial		
	Test Type ID	FOR A	NISOTROPIC	BUCK.	2	2	2		
		I OK A	MISOTROFIC	KOCK.					
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None		
Loading Orienta	tion Rel. to Bedding		N/A IPLE DIMENSI	N/A	N/A	N/A	N/A		
SAIVIFLE DIIVIENSIONS									
Width Perpendicular	to loading, W, mm	60	60	60	60	60	60		
Length Perpendicula	r to Loading, L, mm	30	30	34					
Diameter Parallel	to Loading, D, mm	60	60	60					
Diameter	r at Failure, D', mm		58 TRENGTH DA	57 TA	32	26	30		
			IKLIGIII DA			<u> </u>	<u> </u>		
	Peak Load, P, kN	0.386	0.399	0.377	0.217	0.213	0.28		
	Peak Load, P, lbs	86.8	89.7	84.8	48.8	47.9	62.9		
Uncorr. Pt. Load Stren	gth Index,I _s , MPa	0.113	0.115	0.110	0.089	0.107	0.122		
Uncorr. Pt. Load Strer	ngth Index,I _s , psi	16.4	16.6	16.0	12.9	15.6	17.7		
Size Co	orrection Factor, F	1.07	1.08	1.07	0.99	0.95	0.98		
Corr. Pt. Load Strength	n Index,I _{s(50)} , Mpa	0.12	0.12	0.12	0.09	0.10	0.12		
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi		18	17	13	15	17		
		MOIST	URE CONTEN	IDAIA		I	I		
Moisture Co	ndition of Specimen	As Received							
	Pan No.								
	Pan wt. (g)	21.72	21.72	21.72	21.72	21.72	21.72		
	Total wet wt. (g)	243.42	243.42	243.42	243.42	243.42	243.42		
	Total dry wt (g)	212.65	212.65	212.65	212.65	212.65	212.65		
Mo	oisture Content, %	16.1	16.1	16.1	16.1	16.1	16.1		
	Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:							
Client:	Port of Coos Bay Chan	nol Modification Desired	Date: By:	9/26/2016 PJ		-				
Boring:		B-24	Ву :	B-24	B-24	B-24				
Sample:		R-2	R-2	R-2	R-2	R-2				
Depth, ft:		8	8	8	8	8				
Visual Description:		Very Dark Bluish	Very Dark Bluish	Very Dark Bluish	Very Dark Bluish					
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock				
Test Type		Diametral	Diametral	Axial	Axial	Axial				
Test Type ID		1	1	2	2	2				
FOR ANISOTROPIC ROCK:										
Bedding Angle Relative to Axis	None	None	None	None	None	None				
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A				
		PLE DIMENSI	ONS		•					
Width Perpendicular to loading, W, mm	61	61	61	61	61	61				
Length Perpendicular to Loading, L, mm	33	30	30							
Diameter Parallel to Loading, D, mm	61	61	61							
Diameter at Failure, D', mm	57	59	58	25	30	33				
STRENGTH DATA										
Peak Load, P, kN	0.601	0.55	0.412	0.36	0.594	0.519				
Peak Load, P, lbs	135.1	123.6	92.6	80.9	133.5	116.7				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.173	0.153	0.116	0.185	0.255	0.202				
Uncorr. Pt. Load Strength Index,I _s , psi	25.1	22.2	16.9	26.9	37.0	29.4				
Size Correction Factor, F	1.08	1.09	1.08	0.94	0.98	1.01				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.19	0.17	0.13	0.18	0.25	0.20				
Corr. Pt. Load Strength Index,I _{s(50)} , psi	27	24	18	25	36	30				
. ,	MOIST	URE CONTEN	T DATA							
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received				
Pan No.										
Pan wt. (g)	21.81	21.81	21.81	21.81	21.81	21.81				
Total wet wt. (g)	217.79	217.79	217.79	217.79	217.79	217.79				
Total dry wt (g)		193.49	193.49	193.49	193.49	193.49				
Moisture Content, %	14.2	14.2	14.2	14.2	14.2	14.2				
Comments:										

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			-		
	Client:	Port of Coos Bay Chan	nol Modification Praire	Date: By:	9/26/2016 PJ		-		
	Boring:	B-24	B-24	В у :	РЈ В-24	B-24	B-24		
	Sample:	R-3	R-3	R-3	R-3	R-3	R-3		
	Depth, ft:	11	11	11	11	11	11		
Vi	isual Description:	Very Dark Bluish Gray Rock							
		Glay Nock							
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial		
	Test Type ID	1	1	1	2	2	2		
		FOR A	NISOTROPIC	ROCK:					
Bedding Ang	gle Relative to Axis	None	None	None	None	None	None		
Loading Orientati	ion Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A		
			PLE DIMENSI			<u> </u>	<u> </u>		
Width Perpendicular to	o loading, W, mm	61	61	61	61	61	61		
Length Perpendicular	to Loading, L, mm	31	30	30					
Diameter Parallel t	to Loading, D, mm	61	61	61					
Diameter	at Failure, D', mm		57	58	25	34	33		
STRENGTH DATA									
	Peak Load, P, kN	0.485	0.464	0.503	0.282	0.381	0.374		
	Peak Load, P, lbs	109.0	104.3	113.1	63.4	85.7	84.1		
Uncorr. Pt. Load Streng	gth Index,I _s , MPa	0.142	0.133	0.142	0.145	0.144	0.146		
Uncorr. Pt. Load Stren	gth Index,I _s , psi	20.6	19.4	20.6	21.1	20.9	21.2		
Size Cor	rrection Factor, F	1.07	1.08	1.08	0.94	1.01	1.01		
Corr. Pt. Load Strength	Index,I _{s(50)} , Mpa	0.15	0.14	0.15	0.14	0.15	0.15		
Corr. Pt. Load Strength	n Index,I _{s(50)} , psi		21	22	20	21	21		
		MOIST	URE CONTEN	T DATA		1	1		
Moisture Con	dition of Specimen	As Received							
	Pan No.								
	Pan wt. (g)	22.74	22.74	22.74	22.74	22.74	22.74		
	Total wet wt. (g)	228.23	228.23	228.23	228.23	228.23	228.23		
	Total dry wt (g)	200.76	200.76	200.76	200.76	200.76	200.76		
Mo	isture Content, %	15.4	15.4	15.4	15.4	15.4	15.4		
	Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			
	Client: Project Name:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•
	Boring:	B-24	B-24	B-24	B-24	B-24	B-24
	Sample:	R-3	R-3	R-3	R-3	R-3	R-3
	Depth, ft:	15	15	15	15	15	15
V	isual Description:						
		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1	1	1	2	2	2
		FOR A	NISOTROPIC	ROCK:			
Podding An	gle Relative to Axis	None	None	None	Mana	News	None
Bedding An	gle Relative to Axis	None	None	None	None	None	None
Loading Orientat	ion Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
		SAN	PLE DIMENS	ONS		T	
Width Perpendicular t	to loading, W, mm	61	61	61	61	61	61
Length Perpendicular	r to Loading, L, mm	30	34	32			
Diameter Parallal	to Looding D. mm	61	61	61			
Diameter Parallel	to Loading, D, mm	61	61	61			
Diameter	at Failure, D', mm		55	57	31	32	25
		S ⁻	TRENGTH DA	TA		1	T
	Peak Load, P, kN	0.53	0.489	0.407	0.364	0.353	0.244
	Peak Load, P, lbs	119.1	109.9	91.5	81.8	79.4	54.9
Uncorr. Pt. Load Stren	gth Index,I _s , MPa	0.152	0.146	0.117	0.151	0.142	0.126
Uncorr. Pt. Load Stren	igth Index,I _s , psi	22.1	21.1	17.0	21.9	20.6	18.2
Size Co	rrection Factor, F	1.08	1.07	1.08	0.99	1.00	0.94
Corr. Pt. Load Strength	ı Index,I _{s(50)} , Mpa	0.16	0.16	0.13	0.15	0.14	0.12
Corr. Pt. Load Strength	n Index,I _{s(50)} , psi		23	18	22	21	17
		MOIST	URE CONTEN	T DATA		T	
Moisture Cor	ndition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Woldta's Off	•						
	Pan No.						
	Pan wt. (g)	20.57	20.57	20.57	20.57	20.57	20.57
	Total wet wt. (g)	290.98	290.98	290.98	290.98	290.98	290.98
	Total dry wt (g)	257.87	257.87	257.87	257.87	257.87	257.87
Mc	oisture Content, %	14.0	14.0	14.0	14.0	14.0	14.0
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:							
Client:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•				
Boring:		B-24	В-24	B-24	B-24	B-24				
Sample:	R-4	R-4	R-4	R-4	R-4	R-4				
Depth, ft:		18.25	18.25	18.25	18.25	18.25				
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock				
Test Type		Diametral	Diametral	Diametral	Axial	Axial				
Test Type ID 1 1 1 1 2 2 2 FOR ANISOTROPIC ROCK:										
	FOR A	NISOTROFIC	KOCK.							
Bedding Angle Relative to Axis	None	None	None	None	None	None				
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A				
	SAN	PLE DIMENS	ONS	Т	Т	Г				
Width Perpendicular to loading, W, mm	61	61	61	61	61	61				
Length Perpendicular to Loading, L, mm	30	31	33	31						
Diameter Parallel to Loading, D, mm	61	61	61	61						
Diameter at Failure, D', mm		57	58	53	29	31				
STRENGTH DATA										
Peak Load, P, kN	0.491	0.412	0.436	0.524	0.368	0.244				
Peak Load, P, lbs	110.4	92.6	98.0	117.8	82.7	54.9				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.141	0.118	0.123	0.162	0.163	0.101				
Uncorr. Pt. Load Strength Index,I _s , psi	20.5	17.2	17.9	23.5	23.7	14.7				
Size Correction Factor, F		1.08	1.08	1.06	0.98	0.99				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa		0.13	0.13	0.17	0.16	0.10				
Corr. Pt. Load Strength Index,I _{s(50)} , psi		19	19	25	23	15				
	MOIST	URE CONTEN	T DATA	T	T					
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received				
Pan No.										
Pan wt. (g)	22.07	22.07	22.07	22.07	22.07	22.07				
Total wet wt. (g)	243.35	243.35	243.35	243.35	243.35	243.35				
Total dry wt (g)	220.28	220.28	220.28	220.28	220.28	220.28				
Moisture Content, %	11.6	11.6	11.6	11.6	11.6	11.6				
Comments:				Invalid test. Did not fail through both points.						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128					
Client:	GRI		Date:	9/26/2016					
	Port of Coos Bay Chan		By:	PJ	D 04	D 04			
Boring: Sample:	B-24 R-5	B-24 R-5	B-24 R-5	B-24 R-5	B-24 R-5	B-24 R-5			
Depth, ft:	24	24	24	24	24	24			
Visual Description:	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock			
Test Type		Diametral	Diametral	Diametral	Axial	Axial			
Test Type ID		NISOTROPIC	ROCK:	1	2	2			
	FOR A	MISOTROFIC	NOCK.						
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A			
	SAN	PLE DIMENS	UNS		<u> </u>				
Width Perpendicular to loading, W, mm	61	61	61	61	61	61			
Length Perpendicular to Loading, L, mm	31	32	33	31					
Diameter Parallel to Loading, D, mm	61	61	61	61					
Diameter at Failure, D', mm		55 TRENGTH DA	58 TA	58	39	32			
STRENGTH DATA									
Peak Load, P, kN	0.318	0.253	0.259	0.272	0.205	0.212			
Peak Load, P, lbs	71.5	56.9	58.2	61.1	46.1	47.7			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.090	0.075	0.073	0.077	0.068	0.085			
Uncorr. Pt. Load Strength Index,I _s , psi	13.0	10.9	10.6	11.2	9.8	12.4			
Size Correction Factor, F	1.08	1.07	1.08	1.08	1.04	1.00			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.10	0.08	0.08	0.08	0.07	0.09			
Corr. Pt. Load Strength Index,I _{S(50)} , psi		12	11	12	10	12			
	MOIST	URE CONTEN	T DATA		T				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan No.									
Pan wt. (g)	19.75	19.75	19.75	19.75	19.75	19.75			
Total wet wt. (g)	206.86	206.86	206.86	206.86	206.86	206.86			
Total dry wt (g)	181.94	181.94	181.94	181.94	181.94	181.94			
Moisture Content, %	15.4	15.4	15.4	15.4	15.4	15.4			
Comments:			Invalid test. Did not fail through both points.						
h			ā						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008			Project No.:	5128		
Client:			Date:	9/28/2016		
		nel Modification Project	By:	PJ		
Boring:	B-25	B-25		. 0		
Sample:		R-2				
	R-2	5				
Depth, ft:	5					
Visual Description:						
	Gray Rock	Gray Rock				
						<u> </u>
Test Type	Axial	Axial				
Test Type ID	2	2				
Test Type ID			D001/			
	FOR A	NISOTROPIC	ROCK:		_	
Bedding Angle Relative to Axis	None	None				
Loading Orientation Rel. to Bedding	N/A	N/A				
	SAN	IPLE DIMENSI	ONS		•	
Width Perpendicular to loading, W, mm	44	54				
, , , , , , , , , , , , , , , , , , ,		<u> </u>				
Length Perpendicular to Loading, L, mm						
Longar Forportal calar to Loading, E, Time						
Diameter Parallel to Loading, D, mm						
Diameter raraller to Loading, D, min						
Diameter at Failure, D', mm	24	25				
Diameter at Failure, D, Tillin			ΓΛ			<u> </u>
	ა	TRENGTH DA	IA		1	
Peak Load, P, kN	0.109	0.115				
Peak Load, P, lbs	24.5	25.9				
Uncorr Dt Load Strongth Indov L MDa	0.004	0.007				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.081	0.067				
Unagen Dt Land Ctrongth Index Land	44.0	0.7				
Uncorr. Pt. Load Strength Index,I _s , psi	11.8	9.7				
Size Correction Factor, F	0.87	0.92				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.07	0.06				
Corr. Pt. Load Strength Index,I _{s(50)} , psi		9				
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received				
Pan No.						
Pan wt. (g)	19.77	19.77				
(9/						
Total wet wt. (g)	124.99	124.99				
Total wet wit (g)	124.00	124.55				
Total dry wt (a)	108.09	108.09				
Total dry wt (g)	100.08	100.08				
Moisture Content 9/	10.1	10.1				
Moisture Content, %	19.1	19.1			<u> </u>	
Comments:						
		I			I	i

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:	5128		
Client:			Date:	9/26/2016		•
	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ	1	
Boring: Sample:	B-25 R-2					
Depth, ft:	6.25					
Visual Description:						
	Gray Rock					
Test Type	Axial					
Test Type ID						
	FOR A	NISOTROPIC	ROCK:		,	
Radding Angle Relative to Avie	News					
Bedding Angle Relative to Axis	None					
Loading Orientation Rel. to Bedding	N/A					
	SAM	PLE DIMENSI	ONS		-	
Marie De la	00					
Width Perpendicular to loading, W, mm	60					
Length Perpendicular to Loading, L, mm						
Diameter Parallel to Loading, D, mm						
Diameter at Failure, D', mm	35					
		TRENGTH DA	ГА		•	
Peak Load, P, kN	0.23					
Peak Load, P, lbs	51.7					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.086					
Uncorr. Pt. Load Strength Index,I _s , psi	12.5					
Size Correction Factor, F	1.02					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.09					
Corr. Pt. Load Strength Index,I _{S(50)} , psi						
	MOIST	URE CONTEN	IDAIA		1	
Moisture Condition of Specimen	As Received					
•						
Pan No.						
Pan wt. (g)	22.37					
Total wet wt. (g)	254.56					
Total dry wt (g)	212.95					
Moisture Content, %	21.8					
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:	5128				
Client:			Date:	9/28/2016				
	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ	T			
Boring: Sample:	B-25 R-2							
Depth, ft:	8 8							
Visual Description:								
	Gray Rock							
Test Type	Axial							
Test Type ID	2							
FOR ANISOTROPIC ROCK:								
Bedding Angle Relative to Axis	None							
Deduing Angle Relative to Axis	None							
Loading Orientation Rel. to Bedding	N/A							
	SAN	PLE DIMENSI	ONS					
Width Perpendicular to loading, W, mm	61							
Width respendicular to loading, W, Tillin	01							
Length Perpendicular to Loading, L, mm								
Diameter Perellel to Leading D. mm								
Diameter Parallel to Loading, D, mm								
Diameter at Failure, D', mm	56							
	S	TRENGTH DA	ΓΑ					
Dook Load D kN	0.211							
Peak Load, P, kN	0.211							
Peak Load, P, lbs	47.4							
Uncorr. Pt. Load Strength Index,I _s , MPa	0.049							
Oncorr. I t. Load Otteright index,is, ivii a	0.049							
Uncorr. Pt. Load Strength Index,I _s , psi	7.0							
Cina Commention Footon F	4.40							
Size Correction Factor, F	1.13							
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.05							
Corr. Pt. Load Strength Index,I _{s(50)} , psi		L URE CONTEN	T DATA					
	IVIOIST	CRE CONTEN	IDAIA					
Moisture Condition of Specimen	As Received							
D 1								
Pan No.								
Pan wt. (g)	22.11							
Total wet wt. (g)	82.68							
Total dry wt (g)	72.85							
Moisture Content, %	19.4							
Comments:								
					•			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:					
	Client:	GRI Port of Coos Bay Chan	nol Modification Dunis -t	Date: By:	9/26/2016 PJ		-		
	Boring:	Port of Coos Bay Chan B-25	B-25	B-25	РЈ В-25	B-25	B-25		
	Sample:	R-3	R-3	R-3	R-3	R-3	R-3		
	Depth, ft:	10.5	10.5	10.5	10.5	10.5	10.5		
\	/isual Description:								
		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial		
	Test Type ID	1 FOR A	NISOTRODIC		2	2	2		
FOR ANISOTROPIC ROCK:									
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None		
Loading Orienta	tion Rel. to Bedding		N/A	N/A	N/A	N/A	N/A		
		SAN	PLE DIMENS	ONS					
Width Perpendicular	to loading, W, mm	59	59	59	59	59	59		
Length Perpendicula	er to Loading, L, mm	30	31	31					
Diameter Parallel	to Loading, D, mm	59	59	59					
Diamete	r at Failure, D', mm	55	54	57	34	32	27		
		S	TRENGTH DA	ΤΑ					
	Peak Load, P, kN	0.091	0.15	0.231	0.076	0.157	0.135		
	Peak Load, P, lbs	20.5	33.7	51.9	17.1	35.3	30.3		
Uncorr. Pt. Load Stren	ngth Index,I _s , MPa	0.028	0.047	0.069	0.030	0.065	0.067		
Uncorr. Pt. Load Strer	ngth Index,I _s , psi	4.1	6.8	10.0	4.3	9.5	9.7		
	orrection Factor, F	1.06	1.06	1.07	1.00	0.99	0.95		
Corr. Pt. Load Strength	,		0.05	0.07	0.03	0.06	0.06		
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi		7	11	4	9	9		
		MOIST	URE CONTEN	T DATA		T	ı		
Moisture Co	ndition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received		
	Pan No.								
	Pan wt. (g)	21.63	21.63	21.63	21.63	21.63	21.63		
	Total wet wt. (g)	227.65	227.65	227.65	227.65	227.65	227.65		
	Total dry wt (g)	194.36	194.36	194.36	194.36	194.36	194.36		
M	oisture Content, %	19.3	19.3	19.3	19.3	19.3	19.3		
	Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:		Project No.:	5128			
Client:			Date:	9/26/2016		
		nel Modification Project	By:	PJ	1	
Boring: Sample:	B-25 R-4	B-25 R-4	B-25 R-4			
Depth, ft:	15.5	15.5	15.5			
Visual Description:						
·	Gray Rock	Gray Rock	Gray Rock			
Test Type	Diametral	Diametral	Axial			
Test Type ID	1	1	2			
	FOR A	NISOTROPIC	ROCK:			
Padding Angla Palativa to Avia	None	Nicos	None			
Bedding Angle Relative to Axis	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A			
	SAN	IPLE DIMENS	IONS		-	
Will D. B. L. L. B. W.	50	50	50			
Width Perpendicular to loading, W, mm	59	59	59			
Length Perpendicular to Loading, L, mm	30	31				
Diameter Parallel to Loading, D, mm	59	59				
Diameter at Failure, D', mm	55	56	28			
		TRENGTH DA			1	
Peak Load, P, kN	0.24	0.24	0.09			
Peak Load, P, lbs	54.0	54.0	20.2			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.074	0.073	0.043			
Uncorr. Pt. Load Strength Index,I _s , psi	10.7	10.5	6.2			
Size Correction Factor, F	1.06	1.06	0.96			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.08	0.08	0.04			
,						
Corr. Pt. Load Strength Index,I _{s(50)} , psi		11	6			
	MOIST	URE CONTEN	T DATA		1	
Moisture Condition of Specimen	As Received	As Received	As Received			
inoistare condition of opecimen	/ 13 I COCIVEU	7.5 ACOGIVED	/ IS NOCCIVED			
Pan No.						
Don ut (a)	22.27	22.27	22.27			
Pan wt. (g)	22.27	22.27	22.27			
Total wet wt. (g)	151.19	151.19	151.19			
	400.00	400.00	400.00			
Total dry wt (g)	130.23	130.23	130.23			
Moisture Content, %	19.4	19.4	19.4			
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:						
Client:			Date:						
Boring:	Port of Coos Bay Chan B-25	nel Modification Project B-25	By: B-25	PJ B-25					
Sample:	R-4	R-4	R-4	R-4					
Depth, ft:		17	17	17					
Visual Description:									
1	Gray Rock	Gray Rock	Gray Rock	Gray Rock					
Test Type	Diametral	Diametral	Axial	Axial					
Test Type ID		1	2	2					
FOR ANISOTROPIC ROCK:									
Bedding Angle Relative to Axis	None	None	None	None					
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A					
		IPLE DIMENSI							
Width Perpendicular to loading, W, mm	59	59	59	59					
Length Perpendicular to Loading, L, mm	30	30							
Length respendedial to Loading, E, min		30							
Diameter Parallel to Loading, D, mm	59	59							
Discussion of Fallows DI warms		50	05	0.7					
Diameter at Failure, D', mm		56	25 TA	37					
STRENGTH DATA									
Peak Load, P, kN	0.233	0.215	0.051	0.093					
Peak Load, P, lbs	52.4	48.3	11.5	20.9					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.072	0.065	0.027	0.033					
Uncorr Dt Load Strongth Index L noi	10.4	0.4	3.9	4.9					
Uncorr. Pt. Load Strength Index,I _s , psi	10.4	9.4	3.9	4.9					
Size Correction Factor, F	1.06	1.06	0.94	1.02					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.08	0.07	0.03	0.03					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	11	10	4	5					
		URE CONTEN	T DATA	•					
Moisture Condition of Specimen	As Received	As Received	As Received	As Received					
Pan No.									
Pan wt. (g)	20.08	20.08	20.08	20.08					
Total wet wt. (g)	165.22	165.22	165.22	165.22					
Total wet Wt. (g)	100.22	100.22	100.22	105.22					
Total dry wt (g)	141.79	141.79	141.79	141.79					
		40.0	45.5	40.0					
Moisture Content, %	19.3	19.3	19.3	19.3					
Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	: 823-008		Project No.: 5128			
Client:			Date:	9/29/2016		
Project Name:	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ		
Boring:	B-26	B-26	B-26			
Sample:	R-1	R-1	R-1			
Depth, ft:	4	4	4			
Visual Description:						
	Gray Rock	Gray Rock	Gray Rock			
T 1.T	D: ()		A : 1			
Test Type		Axial	Axial			
Test Type ID		2	2			
	FUR A	NISOTROPIC	RUCK:		Ī	
Bedding Angle Relative to Axis	Nama	Nama	Nama			
beduing Angle Relative to Axis	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A			
g		IPLE DIMENSI				
	<u> </u>					
Width Perpendicular to loading, W, mm	58	58	58			
· · · · · · · · · · · · · · · · · · ·						
Length Perpendicular to Loading, L, mm	31					
Diameter Parallel to Loading, D, mm	58					
<u></u>			40			
Diameter at Failure, D', mm		40	40			
	<u> </u>	TRENGTH DA	IA			
Dook Load D kM	0.214	0.064	0.246			
Peak Load, P, kN	0.214	0.064	0.246			
Peak Load, P, lbs	48.1	14.4	55.3			
			00.0			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.065	0.022	0.083			
Uncorr. Pt. Load Strength Index,I _s , psi	9.4	3.1	12.1			
0: 0						
Size Correction Factor, F	1.06	1.04	1.04			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.07	0.02	0.09			
Gen. : a		0.02	0.00			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	10	3	13			
		URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received			
•						
Pan No.						
_		,	,			
Pan wt. (g)	1722.1	1722.1	1722.1			
Total wat wit (a)	2470	2470	2470			
Total wet wt. (g)	2179	2179	2179			
Total dry wt (g)	2102.4	2102.4	2102.4			
rotal dry Wt (g)	£ 10£.7	2102.7	2102.7			
Moisture Content, %	20.1	20.1	20.1			
		-				
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008 Project No.: 5128								
Client:	GRI		Date:	9/26/2016				
	Port of Coos Bay Chan		By:	PJ	D 00			
Boring: Sample:	B-26 R-3	B-26 R-3	B-26 R-3	B-26 R-3	B-26 R-3			
Depth, ft:	13	13	13	13	13			
Visual Description:								
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
Test Type	Diametral .	Diametral	Axial	Axial	Axial			
Test Type ID	1 FOR A		2	2	2			
	FUR A	NISOTROPIC	RUCK:					
Bedding Angle Relative to Axis	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A			
	SAN	IPLE DIMENSI	UNS		<u> </u>			
Width Perpendicular to loading, W, mm	60	60	60	60	60			
1								
Length Perpendicular to Loading, L, mm	30	30						
Diameter Parallel to Loading, D, mm	60	60						
Biamotor r drailer to Leading, B, min								
Diameter at Failure, D', mm		58	32	41	29			
	S ⁻	TRENGTH DA	ΓΑ		1			
Peak Load, P, kN	0.143	0.16	0.144	0.225	0.031			
	0.110	0.10	0.111	0.220	0.001			
Peak Load, P, lbs	32.1	36.0	32.4	50.6	7.0			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.042	0.046	0.059	0.072	0.014			
Uncorr. Pt. Load Strength Index,I _s , psi	6.1	6.7	8.5	10.4	2.0			
Size Correction Factor, F	1.07	1.08	0.99	1.05	0.97			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.04	0.05	0.06	0.08	0.01			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	7	7	9	11	2			
3		URE CONTEN			_			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received			
Pan No.								
Fair No.								
Pan wt. (g)	22.91	22.91	22.91	22.91	22.91			
Total wat wit (a)	242.42	242.42	242.42	242.42	242.42			
Total wet wt. (g)	212.43	212.43	212.43	212.43	212.43			
Total dry wt (g)	179.73	179.73	179.73	179.73	179.73			
No. 1			00.0		20.0			
Moisture Content, %	20.9	20.9	20.9	20.9	20.9			
Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:			Date:	9/26/2016		
	Port of Coos Bay Chan		By:	PJ	1	
Boring:	B-27	B-27	B-27			
Sample:	R-1 4	R-1	R-1 4			
Depth, ft: Visual Description:	•	4 Very Dark Bluich	•			
visual Description.	Gray Rock	Gray Rock	Gray Rock			
	Gray Hook	Gray Hook	Ciay recor			
Test Type	Diametral	Diametral	Axial			
Test Type ID		1 NICOTRODIC	2			
	FUR A	NISOTROPIC	RUCK:			
Bedding Angle Relative to Axis	None	None	None			
Bodding / Inglo Polativo to / Wio	IVOIIC	None	140110			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A			
	SAN	IPLE DIMENSI	ONS			
NAC 141 D	00		00			
Width Perpendicular to loading, W, mm	60	60	60			
Length Perpendicular to Loading, L, mm	30	35				
Diameter Parallel to Loading, D, mm	60	60				
Diameter et Feilure D' mm	52	49	27			
Diameter at Failure, D', mm		TRENGTH DA	27 TA			
		IKENOTII DA				
Peak Load, P, kN	1.48	1.28	1.2			
Peak Load, P, lbs	332.7	287.8	269.8			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.474	0.435	0.582			
Uncorr. Pt. Load Strength Index,I _s , psi	68.8	63.1	84.4			
Size Correction Factor, F	1.05	1.04	0.96			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.50	0.45	0.56			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	72	65	81			
		URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received			
Pan No.						
Pan wt. (g)	22.32	22.32	22.32			
Total wet wt. (g)	183.99	183.99	183.99			
Total dry wt (g)	149.52	149.52	149.52			
Moisture Content, %	27.1	27.1	27.1			
Comments:		Invalid test. Did not fail through both loading points.				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 223-008										
Project Name										
Boring B-27 B-27 B-27 B-27 B-27 B-27 B-27 R-1										
R-1						B-27	B-27			
Visual Description Very Dark Bluish Very Park Bluish Very Bark	Sample:	R-1	R-1	R-1	R-1	R-1	R-1			
Cray Rock Gray			-		•	•	-			
Test Type Diametral Diametral Diametral Diametral Diametral Axial Axial	Visual Description:									
Test Type ID 1		Gray Rook	Gray Rook	Gray Rook	Gray Rook	Gray Rook	Gray Nook			
Test Type ID 1										
Test Type ID 1										
Test Type ID 1										
Test Type ID 1										
Test Type ID 1	Test Type	Diametral	Diametral	Diametral	Diametral	Axial	Axial			
Bedding Angle Relative to Axis None No		1	1	1	1	2	2			
N/A		FOR A	NISOTROPIC	ROCK:	Т	1	1			
N/A	Bedding Angle Relative to Axis	None	None	None	None	None	None			
SAMPLE DIMENSIONS			. 10.10		. 10.10					
Width Perpendicular to loading, W, mm 61 62 29 STRENGTH DATA Peak Load, P, kN 2.072 1.492 1.775 1.405 0.917 1.525 Peak Load, P, kN 2.072 94.7 75.5 81.2 58.6 65.9 <td>Loading Orientation Rel. to Bedding</td> <td></td> <td></td> <td></td> <td>N/A</td> <td>N/A</td> <td>N/A</td>	Loading Orientation Rel. to Bedding				N/A	N/A	N/A			
Length Perpendicular to Loading, L, mm		SAN	IPLE DIMENSI	ONS		I	I			
Length Perpendicular to Loading, L, mm	Width Perpendicular to loading, W, mm	61	61	61	61	61	61			
Diameter Parallel to Loading, D, mm 61 61 61 61 61 Diameter at Failure, D', mm 52 47 52 57 26 29 STRENGTH DATA										
Diameter at Failure, D', mm 52	Length Perpendicular to Loading, L, mm	31	31	30	30					
STRENGTH DATA	Diameter Parallel to Loading, D, mm	61	61	61	61					
STRENGTH DATA	5		4-				00			
Peak Load, P, kN 2.072 1.492 1.775 1.405 0.917 1.525	Diameter at Failure, D', mm				5/	26	29			
Peak Load, P, lbs		<u></u>	IKLINGTITUA							
Uncorr. Pt. Load Strength Index,I _s , MPa 0.653 0.520 0.560 0.404 0.454 0.677 Uncorr. Pt. Load Strength Index,I _s , psi 94.7 75.5 81.2 58.6 65.9 98.2 Size Correction Factor, F 1.06 1.03 1.06 1.08 0.95 0.98 Corr. Pt. Load Strength Index,I _{s(50)} , Mpa 0.69 0.54 0.59 0.44 0.43 0.66 Corr. Pt. Load Strength Index,I _{s(50)} , psi 100 78 86 63 63 63 96 MOISTURE CONTENT DATA Moisture Condition of Specimen As Received As Receiv	Peak Load, P, kN	2.072	1.492	1.775	1.405	0.917	1.525			
Uncorr. Pt. Load Strength Index,I _s , MPa 0.653 0.520 0.560 0.404 0.454 0.677 Uncorr. Pt. Load Strength Index,I _s , psi 94.7 75.5 81.2 58.6 65.9 98.2 Size Correction Factor, F 1.06 1.03 1.06 1.08 0.95 0.98 Corr. Pt. Load Strength Index,I _{s(50)} , Mpa 0.69 0.54 0.59 0.44 0.43 0.66 Corr. Pt. Load Strength Index,I _{s(50)} , psi 100 78 86 63 63 63 96 MOISTURE CONTENT DATA Moisture Condition of Specimen As Received As Receiv	Peak Load P lhs	465.8	335.4	399 N	315.0	206.1	342.8			
Uncorr. Pt. Load Strength Index,I _s , psi 94.7 75.5 81.2 58.6 65.9 98.2										
Size Correction Factor, F 1.06 1.03 1.06 1.08 0.95 0.98	Uncorr. Pt. Load Strength Index,I _s , MPa	0.653	0.520	0.560	0.404	0.454	0.677			
Size Correction Factor, F 1.06 1.03 1.06 1.08 0.95 0.98	Uncorr. Pt. Load Strength Index,I _s , psi	94.7	75.5	81.2	58.6	65.9	98.2			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa 0.69 0.54 0.59 0.44 0.43 0.66 Corr. Pt. Load Strength Index,I _{s(50)} , psi 100 78 86 63 63 96 MOISTURE CONTENT DATA MOISTURE CONTENT DATA Pan No. As Received As Received<										
Corr. Pt. Load Strength Index, I _{s(50)} , psi 100 78 86 63 63 96 MOISTURE CONTENT DATA Moisture Condition of Specimen Pan No. As Received As Received As Received Pan No. As Received Pan No. As Received Pan No. Pan Wt. (g) 22.19 22.19 22.19 22.19 22.19 22.19 22.19 22.19 22.19 22.19 23.19	Size Correction Factor, F	1.06	1.03	1.06	1.08	0.95	0.98			
MOISTURE CONTENT DATA Moisture Condition of Specimen As Received	Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.69	0.54	0.59	0.44	0.43	0.66			
MOISTURE CONTENT DATA Moisture Condition of Specimen As Received	Carr Bt Load Strongth Index Langi	100	70	96	62	62	06			
Moisture Condition of Specimen As Received As	Corr. Pt. Load Strength Index, i _{S(50)} , psi				03	03	96			
Pan No. Pan wt. (g) 22.19<		IVIOIST	OKE CONTEN	IDAIA						
Pan wt. (g) 22.19 22.19 22.19 22.19 22.19 22.19 22.19 Total wet wt. (g) 188.5 188.5 188.5 188.5 188.5 188.5 Total dry wt (g) 153.59 153.59 153.59 153.59 153.59 153.59 Moisture Content, % 26.6 26.6 26.6 26.6 26.6 26.6	Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan wt. (g) 22.19 22.19 22.19 22.19 22.19 22.19 22.19 Total wet wt. (g) 188.5 188.5 188.5 188.5 188.5 188.5 Total dry wt (g) 153.59 153.59 153.59 153.59 153.59 153.59 Moisture Content, % 26.6 26.6 26.6 26.6 26.6 26.6	Dan No.									
Total wet wt. (g) 188.5	Fall No.									
Total dry wt (g) 153.59 153.59 153.59 153.59 153.59 153.59 153.59 153.69 Moisture Content, % 26.6 26.6 26.6 26.6 26.6 26.6	Pan wt. (g)	22.19	22.19	22.19	22.19	22.19	22.19			
Total dry wt (g) 153.59 153.59 153.59 153.59 153.59 153.59 153.59 153.69 Moisture Content, % 26.6 26.6 26.6 26.6 26.6 26.6	Total wet wt (d)	188.5	188.5	188.5	188.5	188.5	188.5			
Moisture Content, % 26.6 26.6 26.6 26.6 26.6 26.6 26.6										
	Total dry wt (g)	153.59	153.59	153.59	153.59	153.59	153.59			
	Moisture Content. %	26.6	26.6	26.6	26.6	26.6	26.6			
Comments:										
Comments:										
Comments:										
	Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

823-008 GRI Port of Coos Bay Chanr B-27	nel Modification Project	Project No.: Date: By:	5128 9/26/2016 PJ				
Port of Coos Bay Chanr	nel Modification Project						
	nel Modification Project	BV:	U 1				
B-27							
	B-27						
Very Dark Bluish Gray Rock	Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock			
Diametral	Diametral	Axial	Axial	Axial			
1 500 4	1	_	2	2			
FOR A	NISOTROPIC	ROCK:					
None	None	None	None	None			
N/A	N/A	N/A	N/A	N/A			
				,			
<u> </u>		-					
61	61	61	61	61			
30	30						
61	61						
57	51	34	26	23			
S	RENGTH DA	ΓΑ					
1.509	1.494	1.687	1.367	0.574			
339.2	335.9	379.3	307.3	129.0			
0.434	0.480	0.639	0.677	0.321			
62.9	69.7	92.7	98.2	46.6			
1.08	1.05	1.01	0.95	0.93			
0.47	0.50	0.65	0.65	0.30			
68			94	43			
MOIST	JRE CONTEN	T DATA					
An Danairea	۸	As Bassinad	٨٥ 🖸 ١٥٥٥ نام	An Panairrad			
As Received	As Received	AS RECEIVED	As Received	AS Received			
22.44	22.44	22.44	22.44	22.44			
184.78	184.78	184.78	184.78	184.78			
148.44	148.44	148.44	148.44	148.44			
28.8	28.8	28.8	28.8	28.8			
	R-2 11 Very Dark Bluish Gray Rock Diametral 1 FOR A None N/A SAM 61 30 61 57 S7 1.509 339.2 0.434 62.9 1.08 0.47 68 MOIST As Received 22.44 184.78 148.44	R-2	R-2	R-2	R-2		

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008 Project No.: 5128										
Client: GRI Date: 9/26/2016										
	Project Name: Port of Coos Bay Channel Modification Project By: PJ									
Boring: Sample:		B-27 R-2	B-27 R-2	B-27 R-2	B-27 R-2	B-27 R-2				
Depth, ft:		12.5	12.5	12.5	12.5	12.5				
Visual Description:										
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock				
Test Type		Diametral	Diametral	Diametral	Diametral 1	Axial				
Test Type ID		NISOTROPIC	BUCK.	ı	1	2				
	TOK A	INISOTROFIC	NOCK.		<u> </u>					
Bedding Angle Relative to Axis	None	None	None	None	None	None				
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A				
	SAN	IPLE DIMENSI	ONS							
Width Perpendicular to loading, W, mm	60	60	60	60	60	60				
Length Perpendicular to Loading, L, mm	31	31	31	31	31					
Diameter Parallel to Loading, D, mm	60	60	60	60	60					
Diameter at Failure, D', mm	55	53	48	54	49	34				
, , ,		TRENGTH DA			•					
Peak Load, P, kN	0.704	1.474	1.392	1.189	1.406	1.617				
Peak Load, P, lbs	158.3	331.4	312.9	267.3	316.1	363.5				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.213	0.464	0.483	0.367	0.478	0.623				
Uncorr. Pt. Load Strength Index,I _s , psi	30.9	67.2	70.1	53.2	69.4	90.3				
Size Correction Factor, F		1.06	1.03	1.06	1.04	1.01				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa		0.49	0.50	0.39	0.50	0.63				
Corr. Pt. Load Strength Index,I _{s(50)} , psi		71	72	56	72	91				
	MOIST	URE CONTEN	T DATA		T	I				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received				
Pan No.										
Pan wt. (g)	21.6	21.6	21.6	21.6	21.6	21.6				
Total wet wt. (g)	148.56	148.56	148.56	148.56	148.56	148.56				
Total dry wt (g)	123.29	123.29	123.29	123.29	123.29	123.29				
Moisture Content, %	24.9	24.9	24.9	24.9	24.9	24.9				
Comments:		Invalid test. Did not fail through both loading points.								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008 Project No.: 5128									
	Client: GRI Project Name: Port of Coos Bay Channel Modification Project By: PJ								
	Boring:	B-27	B-27	В-27	РЈ В-27	B-27	B-27		
	Sample:	R-3	R-3	R-3	R-3	R-3	R-3		
	Depth, ft:	16	16	16	16	16	16		
\	/isual Description:								
		Gray Rock							
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial		
	Test Type ID	1	1	1	2	2	2		
		FOR A	NISOTROPIC	ROCK:		Г	Г		
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None		
Loading Orienta	tion Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A		
			PLE DIMENS	ONS					
Width Perpendicular	to loading, W, mm	60	60	60	60	60	60		
Length Perpendicula	ır to Loading, L, mm	30	30	31					
Diameter Parallel	to Loading, D, mm	60	60	60					
Diamete	r at Failure, D', mm	52	56	55	36	21	19		
			TRENGTH DA						
	Peak Load, P, kN	1.581	1.233	2.072	1.372	0.822	1.194		
	Peak Load, P, lbs	355.4	277.2	465.8	308.4	184.8	268.4		
Uncorr. Pt. Load Stren	igth Index,I _s , MPa	0.507	0.367	0.628	0.499	0.512	0.823		
Uncorr. Pt. Load Strer	ngth Index,I _s , psi	73.5	53.2	91.1	72.4	74.3	119.3		
Size Co	orrection Factor, F	1.05	1.07	1.06	1.02	0.91	0.88		
Corr. Pt. Load Strength	n Index,I _{s(50)} , Mpa	0.53	0.39	0.67	0.51	0.46	0.73		
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi		57	97	74	67	106		
		MOIST	URE CONTEN	T DATA					
Moisture Co	ndition of Specimen	As Received							
	Pan No.								
	Pan wt. (g)	19.91	19.91	19.91	19.91	19.91	19.91		
	Total wet wt. (g)	174.89	174.89	174.89	174.89	174.89	174.89		
	Total dry wt (g)	141.33	141.33	141.33	141.33	141.33	141.33		
Me	oisture Content, %	27.6	27.6	27.6	27.6	27.6	27.6		
	Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

OTI 1-1- Nov. 000 000										
CTL Job No: 823-008										
	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•				
Boring:	B-27	B-27	B-27	B-27	B-27	B-27				
Sample:	R-4	R-4	R-4	R-4	R-4	R-4				
Depth, ft:	19	19	19	19	19	19				
Visual Description:	Very Dark Bluish Gray Rock									
Test Type		Diametral	Diametral	Axial	Axial	Axial				
Test Type ID		NISOTROPIC	ROCK:	2	2	2				
	IONA		l l							
Bedding Angle Relative to Axis	None	None	None	None	None	None				
Loading Orientation Rel. to Bedding		N/A IPLE DIMENSI	N/A	N/A	N/A	N/A				
	SAIV	I LL DIMENSI								
Width Perpendicular to loading, W, mm	59	59	59	59	59	59				
Length Perpendicular to Loading, L, mm	31	30	31							
Diameter Parallel to Loading, D, mm	59	59	59							
Diameter at Failure, D', mm	55	48	53	32	34	35				
STRENGTH DATA										
Peak Load, P, kN	1.155	1.694	1.068	1.481	1.247	1.438				
Peak Load, P, lbs	259.7	380.8	240.1	332.9	280.3	323.3				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.356	0.598	0.342	0.616	0.488	0.547				
Uncorr. Pt. Load Strength Index,I _s , psi	51.6	86.8	49.5	89.4	70.8	79.3				
Size Correction Factor, F	1.06	1.03	1.05	0.99	1.00	1.01				
Corr. Pt. Load Strength Index, I _{s(50)} , Mpa	0.38	0.62	0.36	0.61	0.49	0.55				
Corr. Pt. Load Strength Index, I _{s(50)} , psi		89	52	89	71	80				
	MOIST	URE CONTEN	Ι ΔΑΓΑ							
Moisture Condition of Specimen	As Received									
Pan No.										
Pan wt. (g)	21.98	21.98	21.98	21.98	21.98	21.98				
Total wet wt. (g)	183.03	183.03	183.03	183.03	183.03	183.03				
Total dry wt (g)	145.37	145.37	145.37	145.37	145.37	145.37				
Moisture Content, %	30.5	30.5	30.5	30.5	30.5	30.5				
Comments:										

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008 Project No.: 5128									
CTL Job No: Client:	5128 9/26/2016								
	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•			
Boring:		B-27	B-27	B-27	B-27	B-27			
Sample:	R-4	R-4	R-4	R-4	R-4	R-4			
Depth, ft:		21	21	21	21	21			
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
Test Type		Diametral	Diametral	Axial	Axial	Axial			
Test Type ID		NISOTROPIC	BUCK.	2	2	2			
	FOR A	MISOTROPIC	NOCK.						
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A IPLE DIMENS	N/A	N/A	N/A	N/A			
	OAN.								
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	30	31	30						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm		51 TRENGTH DA	55 TA	45	36	36			
	<u>_</u>	INCINO III DA	i C		Ι				
Peak Load, P, kN	0.922	1.399	1.093	1.693	1.56	1.352			
Peak Load, P, lbs	207.3	314.5	245.7	380.6	350.7	303.9			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.274	0.457	0.331	0.492	0.567	0.492			
Uncorr. Pt. Load Strength Index,I _s , psi	39.8	66.3	48.0	71.4	82.3	71.3			
Size Correction Factor, F	1.07	1.05	1.06	1.07	1.02	1.02			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.29	0.48	0.35	0.53	0.58	0.50			
Corr. Pt. Load Strength Index,I _{S(50)} , psi		69	51	77	84	73			
	MOIST	URE CONTEN	T DATA		I				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan No.									
Pan wt. (g)	21.76	21.76	21.76	21.76	21.76	21.76			
Total wet wt. (g)	180.42	180.42	180.42	180.42	180.42	180.42			
Total dry wt (g)	149.32	149.32	149.32	149.32	149.32	149.32			
Moisture Content, %	24.4	24.4	24.4	24.4	24.4	24.4			
Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008 Project No.: 5128									
	Client: GRI Date: 9/26/2016 Project Name: Port of Coos Bay Channel Modification Project By: PJ								
	Boring:	B-27	B-27	В-27	РЈ В-27	B-27	B-27		
	Sample:	R-5	R-5	R-5	R-5	R-5	R-5		
	Depth, ft:	23	23	23	23	23	23		
V	/isual Description:								
		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
	Tank Time	Diametral	Diametral	Diamentual	Avial	Avial	Avial		
	Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2		
	rest Type ID	FOR A	NISOTROPIC	ROCK:					
Bedding An	ngle Relative to Axis	None	None	None	None	None	None		
Loading Orienta	tion Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A		
			PLE DIMENSI						
Width Perpendicular	to loading, W, mm	61	61	61	61	61	61		
Length Perpendicula	r to Loading, L, mm	30	31	31					
Diameter Parallel	to Loading, D, mm	61	61	61					
Diameter	r at Failure, D', mm	56	50	50	35	30	19		
	, ,		TRENGTH DA						
	Peak Load, P, kN	1.314	1.499	1.148	1.335	1.405	0.985		
	Peak Load, P, lbs	295.4	337.0	258.1	300.1	315.9	221.4		
Uncorr. Pt. Load Stren	gth Index,I _s , MPa	0.385	0.491	0.376	0.491	0.603	0.667		
Uncorr. Pt. Load Strer	ngth Index,I _s , psi	55.8	71.3	54.6	71.2	87.5	96.8		
Size Co	orrection Factor, F	1.07	1.05	1.05	1.02	0.98	0.89		
Corr. Pt. Load Strength	n Index,I _{s(50)} , Mpa	0.41	0.51	0.39	0.50	0.59	0.59		
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi	60	75	57	73	86	86		
		MOIST	URE CONTEN	T DATA					
Moisture Co	ndition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received		
	Pan No.								
	Pan wt. (g)	20.38	20.38	20.38	20.38	20.38	20.38		
	Total wet wt. (g)	239.34	239.34	239.34	239.34	239.34	239.34		
	Total dry wt (g)	189	189	189	189	189	189		
Mo	oisture Content, %	29.9	29.9	29.9	29.9	29.9	29.9		
	Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008 Project No.: 5128									
CIL Job No: Client:	Project No.: Date:	5128 9/26/2016		•					
	Port of Coos Bay Chan	nel Modification Project	By:	9/26/2016 PJ		-			
Boring:	B-27	B-27	B-27	B-27	B-27	B-27			
Sample:	R-5	R-5	R-5	R-5	R-5	R-5			
Depth, ft:	25	25	25	25	25	25			
Visual Description:									
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial			
Test Type ID		1	1	2	2	2			
	FOR A	NISOTROPIC	ROCK:			1			
Bedding Angle Relative to Axis	Nama	Nama	None	Nama	Nama	Nama			
beduling Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A			
	SAN	IPLE DIMENSI	ONS		-	-			
Middle D. C. L. C. C. C.									
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	31	30	30						
	<u> </u>								
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure D' mm	5.4	52	52	26	26	24			
Diameter at Failure, D', mm	54	53 TRENGTH DA		36	26	31			
	3	INCINGIII DA							
Peak Load, P, kN	1.368	1.368	1.794	1.324	1.201	1.314			
			400.0		0=0.0	00-1			
Peak Load, P, lbs	307.5	307.5	403.3	297.6	270.0	295.4			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.422	0.430	0.575	0.481	0.605	0.555			
Uncorr. Pt. Load Strength Index,I _S , psi	61.2	62.4	83.4	69.8	87.7	80.5			
Size Correction Factor, F	1.06	1.06	1.05	1.02	0.95	0.99			
·									
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.45	0.45	0.60	0.49	0.57	0.55			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	65	66	88	71	83	79			
20111 ti 2000 oti oligini maox,i.g(50), poi		URE CONTEN		•••	00	10			
	WOOT	OKE GOITTEN	IDAIA						
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan No.									
Pan wt. (g)	21.78	21.78	21.78	21.78	21.78	21.78			
T dir Wt. (g)	21.10	21.10	21.10	21.10	21.10	210			
Total wet wt. (g)	184.85	184.85	184.85	184.85	184.85	184.85			
T-4-1 dm 4 (-)	140 54	140 E4	140 54	140 54	140 E4	140 E4			
Total dry wt (g)	149.54	149.54	149.54	149.54	149.54	149.54			
Moisture Content, %	27.6	27.6	27.6	27.6	27.6	27.6			
Comments:									
Comments.									
		vial 3- Block 1- I	L		<u> </u>	<u> </u>			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.: 5128			
Client:			Date:	9/26/2016		
	Port of Coos Bay Chan B-28	nel Modification Project B-28	By:	PJ	1	
Boring: Sample:	R-1	R-1				
Depth, ft:	10	10				
Visual Description:						
	Gray Rock	Gray Rock				
Test Type	Axial	Axial				
Test Type ID	2 EOD A	NISOTROPIC	POCK:			
	POR A	INISOTROFIC	NOCK.			
Bedding Angle Relative to Axis	None	None				
Landing Orientation Ball to Badding	N1/A	N1/A				
Loading Orientation Rel. to Bedding		N/A IPLE DIMENSI	ONS			
	JAIV	II EE DIWIENSI			1	
Width Perpendicular to loading, W, mm	60	58				
Length Perpendicular to Loading, L, mm						
Length Ferpendicular to Loading, E, Illin						
Diameter Parallel to Loading, D, mm						
Diameter at Failure, D', mm	29	50				
Diameter at Failure, D., Illin		TRENGTH DA	<u> </u> ТА			
Peak Load, P, kN	1.121	1.483				
Peak Load, P, lbs	252.0	333.4				
Uncorr. Pt. Load Strength Index,I _s , MPa		0.402				
Uncorr. Pt. Load Strength Index,I _s , psi	73.4	58.3				
Size Correction Factor, F	0.97	1.09				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.49	0.44				
Corr. Pt. Load Strength Index,I _{S(50)} , psi	71	64				
		URE CONTEN	T DATA			
M.: 1. 0. 10. :						
Moisture Condition of Specimen	As Received	As Received				
Pan No.						
Pan wt. (g)	22.64	22.64				
Total wet wt. (g)	211.97	211.97				
		175.11				
Total dry wt (g)		173.11				
Moisture Content, %	24.2	24.2			1	
Comments:						
Comments.						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL J		823-008		Project No.:			
Project	Client:	GRI Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		-
	Boring:		B-28	B-28	B-28	B-28	B-28
	ample:		R-2	R-2	R-2	R-2	R-2
De	pth, ft:	12	12	12	12	12	12
Visual Desc	ription:	Very Dark Bluish Gray Rock					
	st Type		Diametral	Diametral	Axial	Axial	Axial
Test	Type ID		NISOTROPIC	BUCK.	2	2	2
		l lok A	NISOTROFIC	l			
Bedding Angle Relative	to Axis	None	None	None	None	None	None
Loading Orientation Rel. to E	Bedding		N/A IPLE DIMENS	N/A	N/A	N/A	N/A
		OPAN					
Width Perpendicular to loading, V	V, mm	61	61	61	61	61	61
Length Perpendicular to Loading	, L, mm	30	31	30			
Diameter Parallel to Loading,	D, mm	61	61	61			
Diameter at Failure,	D', mm		54 TRENGTH DA	47 TA	33	25	34
		<u> </u>					
Peak Load	d, P, kN	1.692	1.339	1.362	1.368	1.038	1.558
Peak Load	d, P, lbs	380.4	301.0	306.2	307.5	233.4	350.3
Uncorr. Pt. Load Strength Index,I	_s , MPa	0.523	0.406	0.475	0.534	0.535	0.590
Uncorr. Pt. Load Strength Index	,I _s , psi	75.9	59.0	68.9	77.4	77.5	85.6
Size Correction Fa	ctor, F	1.06	1.06	1.03	1.01	0.94	1.01
Corr. Pt. Load Strength Index,I _{s(5)}	₀₎ , Mpa	0.55	0.43	0.49	0.54	0.51	0.60
Corr. Pt. Load Strength Index,I _{s(}	₅₀₎ , psi		63	71	78	73	87
		MOIST	URE CONTEN	IDAIA		I	
Moisture Condition of Sp	ecimen	As Received					
F	Pan No.						
Par	n wt. (g)	20.53	20.53	20.53	20.53	20.53	20.53
Total we	t wt. (g)	154.34	154.34	154.34	154.34	154.34	154.34
Total dr	y wt (g)	124.94	124.94	124.94	124.94	124.94	124.94
Moisture Con	tent, %	28.2	28.2	28.2	28.2	28.2	28.2
Con	nments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	000 000			5400			
CTL Job No: Client:			Project No.: 5128 Date: 9/26/2016				
	Port of Coos Bay Chan	nel Modification Project	Date:	9/26/2016 PJ		•	
Boring:		B-28	B-28	B-28	B-28	B-28	
Sample:	R-2	R-2	R-2	R-2	R-2	R-2	
Depth, ft:		15	15	15	15	15	
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	
Test Type		Diametral	Diametral	Axial	Axial	Axial	
Test Type ID		1	1	2	2	2	
	FOR A	NISOTROPIC	ROCK:		1		
Bedding Angle Relative to Axis	None	None	None	None	None	None	
Loading Orientation Rel. to Bedding		N/A IPLE DIMENSI	N/A	N/A	N/A	N/A	
	OAIV.				Ι		
Width Perpendicular to loading, W, mm	61	61	61	61	61	61	
Length Perpendicular to Loading, L, mm	34	31	30				
Diameter Parallel to Loading, D, mm	61	61	61				
Diameter at Failure, D', mm		47 TRENGTH DA	54 ΤΔ	36	26	23	
	<u>_</u>	INCHO III DA			Ι		
Peak Load, P, kN	1.371	1.336	1.052	1.11	1.388	1.062	
Peak Load, P, lbs	308.2	300.3	236.5	249.5	312.0	238.7	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.459	0.466	0.319	0.397	0.687	0.595	
Uncorr. Pt. Load Strength Index,I _s , psi	66.5	67.6	46.3	57.6	99.7	86.2	
Size Correction Factor, F	1.04	1.03	1.06	1.03	0.95	0.93	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.48	0.48	0.34	0.41	0.66	0.55	
Corr. Pt. Load Strength Index,I _{s(50)} , psi		70	49	59	95	80	
	MOIST	URE CONTEN	T DATA				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received	
Pan No.							
Pan wt. (g)	22.44	22.44	22.44	22.44	22.44	22.44	
Total wet wt. (g)	191.54	191.54	191.54	191.54	191.54	191.54	
Total dry wt (g)	157.82	157.82	157.82	157.82	157.82	157.82	
Moisture Content, %	24.9	24.9	24.9	24.9	24.9	24.9	
Comments:							

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008										
Client:	GRI		Date:	9/26/2016						
	Port of Coos Bay Chan		By:	PJ						
Boring: Sample:		B-28 R-3	B-28 R-3	B-28 R-3						
Depth, ft:	17	17	17	17						
Visual Description:										
	Gray Rock	Gray Rock	Gray Rock	Gray Rock						
Test Type		Axial	Axial	Axial						
Test Type ID		2	2	2						
FOR ANISOTROPIC ROCK:										
Bedding Angle Relative to Axis	None	None	None	None						
Loading Orientation Boll to Rodding	N/A	NI/A	NI/A	NI/A						
Loading Orientation Rel. to Bedding		N/A IPLE DIMENS	N/A ONS	N/A						
Width Perpendicular to loading, W, mm	60	60	60	60						
Length Perpendicular to Loading, L, mm	31									
Diamatan Barallal ta Laadin a Dawa	60									
Diameter Parallel to Loading, D, mm	60									
Diameter at Failure, D', mm		56	51	34						
	S	TRENGTH DA	TA							
Peak Load, P, kN	1.39	1.295	1.896	1.514						
		004.4	400.0	240.4						
Peak Load, P, lbs		291.1	426.2	340.4						
Uncorr. Pt. Load Strength Index,I _s , MPa	0.446	0.303	0.487	0.583						
Uncorr. Pt. Load Strength Index,I _s , psi	64.6	43.9	70.6	84.5						
Size Correction Factor, F	1.05	1.13	1.10	1.01						
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.47	0.34	0.54	0.59						
Corr. Pt. Load Strength Index,I _{S(50)} , psi	68	50	78	85						
Control Education of the Control of		URE CONTEN		00						
Moisture Condition of Specimen	As Received	As Received	As Received	As Received						
Pan No.										
D== ::4 (-)	40.22	40.22	40.22	40.33						
Pan wt. (g)	19.33	19.33	19.33	19.33						
Total wet wt. (g)	167.71	167.71	167.71	167.71						
Total dry wt (g)	137.19	137.19	137.19	137.19						
Moisture Content, %	25.9	25.9	25.9	25.9						
		Invalid test. Did not fail through								
		both points.								
Comments:										
Comments.										

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:			Date:	9/26/2016		
Project Name: Boring:	Port of Coos Bay Chan B-28		B- 28	PJ B-28	B-28	B-28
Sample:	R-3	B-28 R-3	R-3	R-3	R-3	R-3
Depth, ft:	19	19	19	19	19	19
Visual Description:	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock
Test Type	Diametral	Diametral	Axial	Axial	Axial	Axial
Test Type ID		1	2	2	2	2
	FOR A	NISOTROPIC	ROCK:		<u> </u>	<u> </u>
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
	SAN	PLE DIMENS	ONS		<u> </u>	
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	31	30				
Diameter Parallel to Loading, D, mm	60	60				
Diameter at Failure, D', mm		59 TRENGTH DA	40	34	37	25
	<u> </u>	IKENGIH DA				
Peak Load, P, kN	1.002	1.019	1.391	1.843	1.429	1.212
Peak Load, P, lbs	225.3	229.1	312.7	414.3	321.3	272.5
Uncorr. Pt. Load Strength Index,I _s , MPa	0.309	0.288	0.455	0.710	0.506	0.635
Uncorr. Pt. Load Strength Index,I _s , psi	44.9	41.7	66.0	102.9	73.3	92.0
Size Correction Factor, F	1.06	1.08	1.05	1.01	1.03	0.94
Corr. Pt. Load Strength Index, I _{s(50)} , Mpa	0.33	0.31	0.48	0.72	0.52	0.60
Corr. Pt. Load Strength Index,I _{s(50)} , psi		45	69	104	75	87
	MOIST	URE CONTEN	T DATA		<u> </u>	
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.91	22.91	22.91	22.91	22.91	22.91
Total wet wt. (g)	171.64	171.64	171.64	171.64	171.64	171.64
Total dry wt (g)	140.98	140.98	140.98	140.98	140.98	140.98
Moisture Content, %	26.0	26.0	26.0	26.0	26.0	26.0
Comments:			Invalid test. Did not fail through both points.			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	nol Modification Designs					
				R_20		
	2	2	2	2		
		Very Dark Bluish				
Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
Diametral	Axial	Axial	Axial	Axial		
11	_	_	2	2		
FOR A	NISOTROPIC	ROCK:		T		
None	None	None	None	None		
N/A	N/A	N/A	N/A	N/A		
			·	· ·		
60	60	59	59	59		
30						
60						
57	39	32	22	29		
<u> </u>	KENGTH DA	I A		<u> </u>		
0.982	0.137	1.12	0.792	1.03		
220.8	30.8	251.8	178.0	231.6		
0.287	0.046	0.466	0.479	0.473		
41.6	6.7	67.6	69.5	68.6		
1.07	1.04	0.99	0.91	0.97		
0.31	0.05	0.46	0.44	0.46		
45	7	67	63	66		
MOIST	JRE CONTEN	T DATA				
An Danai:	<u></u>	An Danaharat	An Danahira d	An Danaharat		
As Received	AS RECEIVED	As Received	AS RECEIVED	As Received		
21.69	21.69	21.69	21.69	21.69		
150.4	150.4	150.4	150.4	150.4		
125.31	125.31	125.31	125.31	125.31		
24.2	24.2	24.2	24.2	24.2		
				both loading		
	B-29 R-1 2 Very Dark Bluish Gray Rock Diametral 1 FOR A None N/A SAM 60 30 60 57 S 0.982 220.8 0.287 41.6 1.07 0.31 45 MOIST As Received 21.69 150.4 125.31	Port of Coos Bay Channel Modification Project	Port of Coos Bay Channel Modification Project By: By: B-29	Date: 9/28/2016 By: 9/28/2016 By: PJ B-29 B-29 B-29 R-1 R-1 2 2 2 2 2 2 2 2 2	Date: Py Py Py Py Py Py Py P	

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:			Date:	9/28/2016		
		nel Modification Project	Ву:	PJ		
Boring:	B-29	B-29	B-29			
Sample: Depth, ft:	R-2 8	R-2 8	R-2 8			
Visual Description:			_			
·	Gray Rock	Gray Rock	Gray Rock			
Test Type	Diametral	Axial	Axial			
Test Type ID	1 FOR A	NISOTROPIC	2 POCK:			
	TONA		NOCK.			
Bedding Angle Relative to Axis	None	None	None			
Loading Orientation Del to Bodding	N/A	N/A	N/A			
Loading Orientation Rel. to Bedding		IPLE DIMENS				
	O/W					
Width Perpendicular to loading, W, mm	60	60	60			
Length Perpendicular to Loading, L, mm	30					
Diameter Parallel to Loading, D, mm	60					
Diameter at Failure, D', mm	57	45	38			
		TRENGTH DA				
Dook Lood D kN	0.640	4.500	4 007			
Peak Load, P, kN	0.618	1.569	1.227			
Peak Load, P, lbs	138.9	352.7	275.8			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.181	0.456	0.423			
Uncorr. Pt. Load Strength Index,I _s , psi	26.2	66.2	61.3			
Size Correction Factor, F	1.07	1.07	1.03			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.19	0.49	0.44			
Corr. Pt. Load Strength Index,I _{s(50)} , psi		71	63			
	MOIST	URE CONTEN	T DATA		1	
Moisture Condition of Specimen	As Received	As Received	As Received			
Pan No.						
Pan wt. (g)	20.24	20.24	20.24			
Total wet wt. (g)	154.23	154.23	154.23			
Total dry wt (g)	126.87	126.87	126.87			
Moisture Content, %	25.7	25.7	25.7			
Comments:						
Comments.						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:	5128		
Client:			Date:	9/26/2016		
	Port of Coos Bay Chan		By:	PJ	•	
Boring:		B-29	B-29	B-29		
Sample:	R-3	R-3	R-3	R-3		
Depth, ft:	12	12	12	12		
Visual Description:						
	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
Test Type		Diametral	Axial	Axial		
Test Type ID		1	2	2		
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None	None	None		
	.	.		A1/A		
Loading Orientation Rel. to Bedding		N/A	N/A	N/A		
	SAN	IPLE DIMENS	UNS			
Middle Demonstration () 12 MA	00	00	00	00		
Width Perpendicular to loading, W, mm	60	60	60	60		
Length Perpendicular to Loading, L, mm	30	31				
Length Ferpendicular to Loading, L, Illin	30	31				
Diameter Parallel to Loading, D, mm	60	60				
Diameter at Failure, D', mm	57	57	26	25		
	S	TRENGTH DA	ΤA			
Peak Load, P, kN	0.513	0.611	1.248	1.132		
Peak Load, P, lbs	115.3	137.4	280.6	254.5		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.150	0.179	0.628	0.593		
Officorr. Ft. Load Strength index,is, wifa	0.150	0.179	0.020	0.595		
Uncorr. Pt. Load Strength Index,I _s , psi	21.8	25.9	91.1	86.0		
encent a lead on ongan macri, ig, per			•			
Size Correction Factor, F	1.07	1.07	0.95	0.94		
			0.00	0.0 .		
Corr. Pt. Load Strength Index, I _{s(50)} , Mpa	0.16	0.19	0.60	0.56		
·						
Corr. Pt. Load Strength Index,I _{s(50)} , psi		28	87	81		
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received		
5						
Pan No.						
Pan wt. (g)	20.76	20.76	20.76	20.76		
Fail Wt. (g)	20.70	20.70	20.10	20.10		
Total wet wt. (g)	135.79	135.79	135.79	135.79		
I star wet wit (g)	.000	.000	.55.75	.000		
Total dry wt (g)	112.48	112.48	112.48	112.48		
Moisture Content, %	25.4	25.4	25.4	25.4		
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	Project No.:	5128				
Client:			Date:	9/26/2016		
	Port of Coos Bay Chan		By:	PJ	1	
Boring: Sample:	B-30 R-1	B-30 R-1	B-30 R-1			
Depth, ft:	12	12	12			
Visual Description:						
	Gray Rock	Gray Rock	Gray Rock			
Test Type	Diametral	Diametral	Axial			
Test Type ID		1	2			
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A			
		PLE DIMENS				
Width Perpendicular to loading, W, mm	59	59	59			
Length Perpendicular to Loading, L, mm	30	30				
Length Cipendicular to Loading, E, Illin		30				
Diameter Parallel to Loading, D, mm	59	59				
D:		5 4	0.4			
Diameter at Failure, D', mm	55		34 TA			
	<u> </u>	INCINGIII DA				
Peak Load, P, kN	0.258	1.067	1.192			
Peak Load, P, lbs	58.0	239.9	268.0			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.080	0.335	0.467			
Lineary Dt. Lood Strongth Index L. noi	44.5	40.6	67.7			
Uncorr. Pt. Load Strength Index,I _s , psi	11.5	48.6	67.7			
Size Correction Factor, F	1.06	1.06	1.00			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.08	0.35	0.47			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	12	51	68			
- 5(55)		URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received			
Pan No.						
i anno.						
Pan wt. (g)	20.64	20.64	20.64			
T-4-144 (-)	404.45	404.45	404.45			
Total wet wt. (g)	101.45	101.45	101.45			
Total dry wt (g)	88.31	88.31	88.31			
Moisture Content, %		19.4	19.4			
	Invalid test- Did					
	not fail through both points.					
	, "					
Comments:						
1		I	I			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

OTI 11 N 000 000									
CTL Job No:			Project No.:	5128 9/26/2016		<u>.</u>			
Client:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•			
Boring:		B-30	B-30	B-30	B-30	B-30			
Sample:		R-1	R-1	R-1	R-1	R-1			
Depth, ft:	14.5	14.5	14.5	14.5	14.5	14.5			
Visual Description:	Very Dark Bluish								
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
Test Type		Diametral	Diametral	Diametral	Axial	Axial			
Test Type ID		1	1	1	2	2			
	FOR A	NISOTROPIC	ROCK:		,	Г			
Bedding Angle Relative to Axis	None	None	None	None	None	None			
beduing Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A			
	SAN	PLE DIMENS	ONS						
Midth Damandianto to doding M. M. gara	60	60	60	60	60	60			
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm		30	30	30					
Diameter Parallel to Loading, D, mm		60	60	60					
Diameter at Failure, D', mm	26	56	57	55	30	27			
Biamotor at Fallaro, B, min		TRENGTH DA		00	00	Li			
Peak Load, P, kN	0.384	0.842	0.768	0.821	0.821	0.258			
Peak Load, P, lbs	86.3	189.3	172.7	184.6	184.6	58.0			
		109.3	112.1	104.0	104.0	36.0			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.193	0.251	0.225	0.249	0.358	0.125			
Uncorr Bt Load Strongth Index L nei	28.0	26.2	22.6	36.1	52.0	10.1			
Uncorr. Pt. Load Strength Index,I _s , psi	20.0	36.3	32.6	30.1	52.0	18.1			
Size Correction Factor, F	0.95	1.07	1.07	1.06	0.98	0.96			
, and the second									
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.18	0.27	0.24	0.26	0.35	0.12			
Corr. Pt. Load Strength Index, I _{s(50)} , psi	27	39	35	38	51	17			
5 (66)/-1		URE CONTEN							
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Dan Na									
Pan No.									
Pan wt. (g)	22.32	22.32	22.32	22.32	22.32	22.32			
Total wet wt. (g)	127.01	127.01	127.01	127.01	127.01	127.01			
Total dry wt (g)	112.26	112.26	112.26	112.26	112.26	112.26			
· otal ally Wt (g)									
Moisture Content, %		16.4	16.4	16.4	16.4	16.4			
	Invalid test- Did								
	not fail through both points.								
	Dour points.								
Comments:									
T	1. Diametral 2. /				-	-			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:			
Client:			Date:	9/26/2016		
	Port of Coos Bay Chan		By:	PJ	-	
Boring:		B-30	B-30	B-30		
Sample:		R-3	R-3	R-3		
Depth, ft:		22	22	22		
Visual Description:						
	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
Test Type		Axial	Axial	Axial		
Test Type ID		2	2	2		
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None	None	None		
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A		
Loading Orientation Net. to Bedding		IPLE DIMENS		IN/A		
	SAIV	ILLE DIMENSI	ONO		1	
Width Perpendicular to loading, W, mm	58	58	58	58		
vvidin respendicular to loading, vv, mili	Ju	Ju	JU	JU		
Length Perpendicular to Loading, L, mm	78					
Diameter Parallel to Loading, D, mm	58					
Diameter at Failure, D', mm		34	34	32		
	S ⁻	TRENGTH DA	ΤΑ			
Peak Load, P, kN	0.635	0.537	0.598	0.273		
Peak Load, P, lbs	142.8	120.7	134.4	61.4		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.203	0.214	0.238	0.116		
Officerit it is bead outering in midera, ig, will d	0.200	0.214	0.200	0.110		
Uncorr. Pt. Load Strength Index,I _s , psi	29.4	31.0	34.5	16.8		
3, 1, 3, 1, 1						
Size Correction Factor, F	1.05	1.00	1.00	0.99		
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.21	0.21	0.24	0.11		
Com Dt I and Ctunament Indiana				4=		
Corr. Pt. Load Strength Index,I _{S(50)} , psi		31	35	17		
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received		
]						
Pan No.						
Pan wt. (g)	22.02	22.02	22.02	22.02		
Faii Wt. (g)	22.02	22.02	22.02	22.02		
Total wet wt. (g)	182.75	182.75	182.75	182.75		
I star wet wit (g)		.020	.020	.02.70		
Total dry wt (g)	156.95	156.95	156.95	156.95	<u> </u>	
Moisture Content, %	19.1	19.1	19.1	19.1		
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			-
	Client:	GRI Port of Coos Bay Chani	nol Modification Praire	Date: By:	9/26/2016 PJ		-
	Boring:	B-30	B-30	B-30	B-30	B-30	B-30
	Sample:	R-3	R-3	R-3	R-3	R-3	R-3
	Depth, ft:	25	25	25	25	25	25
Vi	sual Description:	Very Dark Bluish Gray Rock					
		,	,		,	,	,
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1	1	1	2	2	2
		FOR A	NISOTROPIC	ROCK:		Ī	I
Bedding Ang	gle Relative to Axis	None	None	None	None	None	None
Loading Orientation	on Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
		SAIV	PLE DIMENSI	ONS		Π	Π
Width Perpendicular to	o loading, W, mm	59	59	59	59	59	59
Length Perpendicular	to Loading, L, mm	31	31	30			
Diameter Parallel to	o Loading, D, mm	59	59	59			
Diameter	at Failure, D', mm	54	56 TRENGTH DA	55 T A	25	32	26
		3	IKENGIH DA	I A		I	I
	Peak Load, P, kN	0.719	0.764	0.374	0.429	0.577	0.604
	Peak Load, P, lbs	161.6	171.8	84.1	96.4	129.7	135.8
Uncorr. Pt. Load Streng	th Index,I _s , MPa	0.226	0.231	0.115	0.228	0.240	0.309
Uncorr. Pt. Load Streng	gth Index,I _s , psi	32.7	33.5	16.7	33.1	34.8	44.9
Size Cor	rection Factor, F	1.06	1.06	1.06	0.94	0.99	0.95
Corr. Pt. Load Strength	Index,I _{s(50)} , Mpa	0.24	0.25	0.12	0.21	0.24	0.29
Corr. Pt. Load Strength	Index,I _{s(50)} , psi		36	18	31	35	42
		MOIST	URE CONTEN	IDAIA		I	I
Moisture Con-	dition of Specimen	As Received					
	Pan No.						
	Pan wt. (g)	21.61	21.61	21.61	21.61	21.61	21.61
	Total wet wt. (g)	195.12	195.12	195.12	195.12	195.12	195.12
	Total dry wt (g)	168.7	168.7	168.7	168.7	168.7	168.7
Moi	isture Content, %	18.0	18.0	18.0	18.0	18.0	18.0
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			-
	Client:	GRI Port of Coos Bay Chan	nol Modification Praire	Date: By:	9/26/2016 PJ		-
	Boring:	B-30	B-30	B-30	B-30	B-30	B-30
	Sample:	R-4	R-4	R-4	R-4	R-4	R-4
	Depth, ft:	28	28	28	28	28	28
\	/isual Description:						
		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1	1	1	2	2	2
		FOR A	NISOTROPIC	ROCK:		Ι	1
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None
Loading Orienta	tion Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
			PLE DIMENS	ONS			
Width Perpendicular	to loading, W, mm	60	60	60	60	60	60
Length Perpendicula	ır to Loading, L, mm	30	31	30			
Diameter Parallel	to Loading, D, mm	60	60	60			
Diamete	r at Failure, D', mm	58	59	57	24	34	30
		S	TRENGTH DA	TA			
	Peak Load, P, kN	0.834	0.241	0.509	0.509	0.354	0.587
	Peak Load, P, lbs	187.5	54.2	114.4	114.4	79.6	132.0
Uncorr. Pt. Load Stren	igth Index,I _s , MPa	0.240	0.068	0.149	0.278	0.136	0.256
Uncorr. Pt. Load Strer	ngth Index,I _s , psi	34.8	9.9	21.6	40.3	19.8	37.1
Size Co	orrection Factor, F	1.08	1.08	1.07	0.93	1.01	0.98
Corr. Pt. Load Strength	n Index,I _{s(50)} , Mpa	0.26	0.07	0.16	0.26	0.14	0.25
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi		11	23	38	20	36
		MOIST	URE CONTEN	T DATA			
Moisture Co	ndition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
	Pan No.						
	Pan wt. (g)	22.33	22.33	22.33	22.33	22.33	22.33
	Total wet wt. (g)	117.48	117.48	117.48	117.48	117.48	117.48
	Total dry wt (g)	103.16	103.16	103.16	103.16	103.16	103.16
Me	oisture Content, %	17.7	17.7	17.7	17.7	17.7	17.7
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:		Project No.:	5128					
Client:	GRI		Date:	9/26/2016				
	Port of Coos Bay Chan		B- 30	PJ B-30	D 20	B-30		
Boring: Sample:	R-4	B-30 R-4	R-4	R-4	B-30 R-4	R-4		
Depth, ft:	30	30	30	30	30	30		
Visual Description:	Very Dark Bluish Gray Rock							
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial		
Test Type ID	1 FOR 4		1	2	2	2		
	FUR A	NISOTROPIC	ROCK:		Π			
Bedding Angle Relative to Axis	None	None	None	None	None	None		
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A		
	SAIV	PLE DIMENSI	ONS					
Width Perpendicular to loading, W, mm	60	60	60	60	60	60		
Length Perpendicular to Loading, L, mm	30	30	30					
Diameter Parallel to Loading, D, mm	60	60	60					
Diameter at Failure, D', mm		57	56 FA	24	26	27		
STRENGTH DATA								
Peak Load, P, kN	0.462	0.495	0.314	0.126	0.263	0.252		
Peak Load, P, lbs	103.9	111.3	70.6	28.3	59.1	56.7		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.135	0.145	0.093	0.069	0.132	0.122		
Uncorr. Pt. Load Strength Index,I _s , psi	19.6	21.0	13.6	10.0	19.2	17.7		
Size Correction Factor, F	1.07	1.07	1.07	0.93	0.95	0.96		
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.14	0.16	0.10	0.06	0.13	0.12		
Corr. Pt. Load Strength Index,I _{s(50)} , psi	21	23	14	9	18	17		
	MOIST	URE CONTEN	T DATA		1			
Moisture Condition of Specimen	As Received							
Pan No.								
Pan wt. (g)	22.4	22.4	22.4	22.4	22.4	22.4		
Total wet wt. (g)	147.96	147.96	147.96	147.96	147.96	147.96		
Total dry wt (g)	129.78	129.78	129.78	129.78	129.78	129.78		
Moisture Content, %	16.9	16.9	16.9	16.9	16.9	16.9		
Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:	GRI		Date:	9/26/2016		
Project Name:	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ		·
Boring:	B-31	B-31	B-31	B-31	B-31	B-31
Sample: Depth, ft:	R-1 4	R-1 4	R-1 4	R-1 4	R-1 4	R-1 4
Visual Description:	·	•				•
·	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
Test Type ID		NISOTROPIC	ROCK:	2	2	2
	TOKA	NIOOTKOTIO	l l		I	
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAIV	IPLE DIMENS	IONS		1	
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	31	31			
Diameter Parallel to Loading, D, mm	60	60	60			
Diameter at Failure, D', mm	56	57	57	32	26	21
	S ⁻	TRENGTH DA	TA I		<u> </u>	
Peak Load, P, kN	0.737	0.61	0.655	0.493	0.411	0.161
Peak Load, P, lbs	165.7	137.1	147.2	110.8	92.4	36.2
Uncorr. Pt. Load Strength Index,I _s , MPa	0.219	0.178	0.192	0.202	0.207	0.100
Uncorr. Pt. Load Strength Index,I _s , psi	31.8	25.9	27.8	29.2	30.0	14.6
Size Correction Factor, F	1.07	1.07	1.07	0.99	0.95	0.91
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.23	0.19	0.21	0.20	0.20	0.09
Corr. Pt. Load Strength Index,I _{s(50)} , psi	34	28	30	29	28	13
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.21	22.21	22.21	22.21	22.21	22.21
Total wet wt. (g)	158.3	158.3	158.3	158.3	158.3	158.3
Total dry wt (g)	135.9	135.9	135.9	135.9	135.9	135.9
Moisture Content, %	19.7	19.7	19.7	19.7	19.7	19.7
Comments:						
		vial 3- Block 4-	<u> </u>			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			-
	Client: Proiect Name:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		-
<u> </u>	Boring:	B-31	B-31	B-31	B-31	B-31	B-31
	Sample:	R-1	R-1	R-1	R-1	R-1	R-1
Vieue	Depth, ft:	7	7	7	7	7	7
visua	ii Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Very Dark Bluish Gray Rock	Gray Rock
		Gray Hook	Gray Hook	Cray Hook	Gray Hook	Cray Hook	Gray rissic
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1	1	1	2	2	2
		FOR A	NISOTROPIC	ROCK:		T	T
Bedding Angle F	Relative to Axis	None	None	None	None	None	None
		.					21/2
Loading Orientation F	Rel. to Bedding		N/A IPLE DIMENSI	N/A	N/A	N/A	N/A
		SAIV	I LE DIMENSI				
Width Perpendicular to loa	ading, W, mm	60	60	60	60	60	60
Length Perpendicular to L	oading I mm	31	31	30			
Length Ferpendicular to L	.oaumy, L, mm	31	31	30			
Diameter Parallel to Lo	oading, D, mm	60	60	60			
Diameter at F	ailure, D', mm	54	59	57	25	27	26
Biameter at 1	andro, D , mini		TRENGTH DA		20	21	20
_							
Pe:	ak Load, P, kN	0.659	0.641	0.545	0.305	0.446	0.466
Pea	ak Load, P, lbs	148.1	144.1	122.5	68.6	100.3	104.8
Uncorr. Pt. Load Strength I	ndex,I _s , MPa	0.203	0.181	0.159	0.160	0.216	0.235
Uncorr. Pt. Load Strength	Index,I _s , psi	29.5	26.3	23.1	23.2	31.4	34.0
Size Correct	tion Factor, F	1.06	1.08	1.07	0.94	0.96	0.95
Corr. Pt. Load Strength Ind	ex,I _{s(50)} , Mpa	0.22	0.20	0.17	0.15	0.21	0.22
Corr. Pt. Load Strength Inc	dex,I _{s(50)} , psi		28	25	22	30	32
		MOIST	URE CONTEN	T DATA		T	T
Moisture Conditio	n of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
sistars serialis	•	112 110001100	1 12 1 10001100	1 12 1 13 23 17 3 4	1 12 1 12 2 1 1 2 2	1 := 1 (555)//54	1.1.7.003,704
	Pan No.						
	Pan wt. (g)	22.24	22.24	22.24	22.24	22.24	22.24
Т	otal wet wt. (g)	127.31	127.31	127.31	127.31	127.31	127.31
-	Total dry wt (g)	110.32	110.32	110.32	110.32	110.32	110.32
Moistu	re Content, %	19.3	19.3	19.3	19.3	19.3	19.3
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

OTI LI NI	000 000		.	E400		
CTL Job No:			Project No.:			
Client:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		
Boring:	B-31	B-31	B-31	B-31	I	
Sample:	R-2	R-2	R-2	R-2		
Depth, ft:	10	10	10	10		
Visual Description:						
	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
Test Type	Diametral	Axial	Axial	Axial		
Test Type ID		2	2	2		
,		NISOTROPIC	ROCK:		•	
Bedding Angle Relative to Axis	None	None	None	None		
Loading Orientation Ball to Ballium	NI/A	NI/A	NI/A	NI/A		
Loading Orientation Rel. to Bedding		N/A IPLE DIMENS	N/A	N/A		
	SAIV	IL PE DIMENS	CNS	ı	Т	
Width Perpendicular to loading, W, mm	59	50	59	59		
Length Perpendicular to Loading, L, mm	30					
Diameter Perallel to Leading D. mm	50					
Diameter Parallel to Loading, D, mm	59					
Diameter at Failure, D', mm	57	49	36	31		
. ,		TRENGTH DA			<u>'</u>	
Peak Load, P, kN	0.595	0.84	0.272	0.296		
Peak Load, P, lbs	133.8	188.8	61.1	66.5		
		100.0	01.1	00.0		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.177	0.269	0.101	0.127		
Uncorr Pt Load Strongth Index L nei	25.7	20.4	14.6	10.4		
Uncorr. Pt. Load Strength Index,I _s , psi	25.7	39.1	14.6	18.4		
Size Correction Factor, F	1.07	1.05	1.02	0.98		
·						
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.19	0.28	0.10	0.13		
Corr. Pt. Load Strength Index,I _{s(50)} , psi	27	41	15	18		
		URE CONTEN				
	WOIST	CONTEN	IDAIA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received		
·						
Pan No.						
Pan wt. (g)	22.3	22.3	22.3	22.3		
Pan Wt. (g)	22.3	22.3	22.3	22.3		
Total wet wt. (g)	183.69	183.69	183.69	183.69		
Total dry wt (g)	156.15	156.15	156.15	156.15		
Moisture Content, %	20.6	20.6	20.6	20.6		
wioisture Content, %	20.0	20.0	20.0	20.0		
Comments:						
	4 5: 4 1 6 4	vial 3 Block 4				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008 Project No.: 5128								
Client:			Date:					
Project Name: Boring:	Port of Coos Bay Chan B-31	nel Modification Project B-31	By: B-31	PJ B-31	B-31			
Sample:		R-3	R-3	R-3	R-3			
Depth, ft:		14	14	14	14			
Visual Description:	Very Dark Bluish Gray Rock							
Test Type		Axial	Axial	Diametral	Axial			
Test Type ID			2 POCK:	1	2			
FOR ANISOTROPIC ROCK:								
Bedding Angle Relative to Axis	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A			
	SAN	IPLE DIMENSI	ONS	T				
Width Perpendicular to loading, W, mm	61	61	61	61	61			
Length Perpendicular to Loading, L, mm	30			31				
Diameter Parallel to Loading, D, mm	61			61				
Diameter at Failure, D', mm		40 TRENGTH DA	30 T A	53	24			
		THE THE THE						
Peak Load, P, kN	1.053	0.731	0.484	0.811	0.537			
Peak Load, P, lbs	236.7	164.3	108.8	182.3	120.7			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.332	0.235	0.208	0.251	0.288			
Uncorr. Pt. Load Strength Index,I _s , psi	48.1	34.1	30.1	36.4	41.8			
Size Correction Factor, F	1.06	1.05	0.98	1.06	0.94			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.35	0.25	0.20	0.27	0.27			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	51	36	30	39	39			
	MOIST	URE CONTEN	T DATA					
Moisture Condition of Specimen	As Received							
Pan No.								
Pan wt. (g)	20.51	20.51	20.51	20.51	20.51			
Total wet wt. (g)	213.27	213.27	213.27	213.27	213.27			
Total dry wt (g)	182.78	182.78	182.78	182.78	182.78			
Moisture Content, %	18.8	18.8	18.8	18.8	18.8			
Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			
	Client:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		-
	Boring:	B-31	B-31	В-31	B-31	B-31	B-31
	Sample:	R-3	R-3	R-3	R-3	R-3	R-3
	Depth, ft:	17	17	17	17	17	17
\	/isual Description:	Very Dark Bluish Gray Rock					
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	FOR A	NISOTROPIC	ROCK∙ I	2	2	2
		TOK A	MISOTROFIC	KOCK.			
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None
Loading Orienta	tion Rel. to Bedding		N/A IPLE DIMENSI	N/A	N/A	N/A	N/A
Width Perpendicular	-	61	61	61	61	61	61
Length Perpendicula	er to Loading, L, mm	31	30	31			
Diameter Parallel	to Loading, D, mm	61	61	61			
Diamete	r at Failure, D', mm		57	58	37	31	29
		S ⁻	TRENGTH DA	ГА		,	Т
	Peak Load, P, kN	0.506	0.909	0.714	0.608	0.448	0.471
	Peak Load, P, lbs	113.8	204.4	160.5	136.7	100.7	105.9
Uncorr. Pt. Load Stren	ngth Index,I _s , MPa	0.146	0.261	0.202	0.212	0.186	0.209
Uncorr. Pt. Load Strer	ngth Index,I _s , psi	21.1	37.9	29.3	30.7	27.0	30.3
Size Co	orrection Factor, F	1.08	1.08	1.08	1.03	0.99	0.98
Corr. Pt. Load Strength	h Index,I _{s(50)} , Mpa	0.16	0.28	0.22	0.22	0.18	0.20
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi		41	32	32	27	30
		MOIST	URE CONTEN	T DATA			
Moisture Co	ndition of Specimen	As Received					
	Pan No.						
	Pan wt. (g)	20.49	20.49	20.49	20.49	20.49	20.49
	Total wet wt. (g)	176.72	176.72	176.72	176.72	176.72	176.72
	Total dry wt (g)	151.31	151.31	151.31	151.31	151.31	151.31
Me	oisture Content, %	19.4	19.4	19.4	19.4	19.4	19.4
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 823-008								
CIL Job No: Client:			Project No.: Date:	5128 9/26/2016		•		
	Port of Coos Bay Chan	nel Modification Project	By:	9/26/2016 PJ		-		
Boring:	B-31	B-31	B-31	B-31	B-31	B-31		
Sample:	R-4	R-4	R-4	R-4	R-4	R-4		
Depth, ft:	20	20	20	20	20	20		
Visual Description:								
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial		
Test Type ID		1	1	2	2	2		
	FOR A	NISOTROPIC	ROCK:		1	1		
Bedding Angle Relative to Axis	Nama	Nama	None	Nama	Nama	Nama		
beduling Angle Relative to Axis	None	None	None	None	None	None		
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A		
	SAN	IPLE DIMENSI	ONS					
Middle D. C. L. C. C. C.	0.4	24	0.4	0.4	24	24		
Width Perpendicular to loading, W, mm	61	61	61	61	61	61		
Length Perpendicular to Loading, L, mm	31	30	30					
	<u> </u>							
Diameter Parallel to Loading, D, mm	61	61	61					
Diameter at Failure D' mm	56	59	56	20	20	24		
Diameter at Failure, D', mm			56 TA	30	29	24		
STRENGTH DATA								
Peak Load, P, kN	0.905	0.621	0.632	0.281	0.836	0.239		
		400.0			40= 0			
Peak Load, P, lbs	203.5	139.6	142.1	63.2	187.9	53.7		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.265	0.173	0.185	0.121	0.371	0.128		
Uncorr. Pt. Load Strength Index,I _S , psi	38.4	25.0	26.8	17.5	53.8	18.6		
Size Correction Factor, F	1.07	1.09	1.07	0.98	0.98	0.94		
·								
Corr. Pt. Load Strength Index, I _{s(50)} , Mpa	0.28	0.19	0.20	0.12	0.36	0.12		
Corr. Pt. Load Strength Index, I _{S(50)} , psi	41	27	29	17	53	17		
Control Load Grength Macx,15(50), por		URE CONTEN		.,	00	.,		
	IVIOIST	I CONTEN	IDAIA					
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received		
Pan No.								
Pan wt. (g)	21.66	21.66	21.66	21.66	21.66	21.66		
, an we (g)	0	21.00	11.00	0	200	21.00		
Total wet wt. (g)	203.9	203.9	203.9	203.9	203.9	203.9		
T-4-1 dm 4 (-)	170.00	170.00	170.00	170.00	170.00	170.00		
Total dry wt (g)	178.83	178.83	178.83	178.83	178.83	178.83		
Moisture Content, %	16.0	16.0	16.0	16.0	16.0	16.0		
Comments:								
Comments.								
	1- Diametral 2- A		l		<u> </u>	l		

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	200 200			= 100				
CTL Job No:			Project No.:					
Client: Project Name:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•		
Boring:		B-31	B-31	B-31	B-31	B-31		
Sample:	R-4	R-4	R-4	R-4	R-4	R-4		
Depth, ft:		22	22	22	22	22		
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
Test Type	Diametral	Diametral	Diametral	Diametral	Axial	Axial		
Test Type ID		1	1	1	2	2		
7		NISOTROPIC	ROCK:		•	•		
Bedding Angle Relative to Axis	None	None	None	None	None	None		
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A		
		IPLE DIMENSI	ONS					
Width Perpendicular to loading, W, mm	60	60	60	60	60	60		
Length Perpendicular to Loading, L, mm	30	31	30	32				
Diameter Parallel to Loading, D, mm	60	60	60	60				
Diameter at Failure, D', mm		54	50	57	34	39		
STRENGTH DATA								
Peak Load, P, kN	0.817	1.047	0.943	0.877	0.683	0.763		
Peak Load, P, lbs	183.7	235.4	212.0	197.2	153.5	171.5		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.248	0.323	0.314	0.256	0.263	0.256		
Uncorr. Pt. Load Strength Index,I _s , psi	35.9	46.9	45.6	37.2	38.1	37.1		
Size Correction Factor, F	1.06	1.06	1.04	1.07	1.01	1.04		
Corr. Pt. Load Strength Index, I _{s(50)} , Mpa	0.26	0.34	0.33	0.28	0.27	0.27		
Corr. Pt. Load Strength Index,I _{s(50)} , psi		50	47	40	38	39		
	MOIST	URE CONTEN	T DATA	Г	Т	Г		
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received		
Pan No.								
Pan wt. (g)	19.84	19.84	19.84	19.84	19.84	19.84		
Total wet wt. (g)	241.45	241.45	241.45	241.45	241.45	241.45		
Total dry wt (g)	206	206	206	206	206	206		
Moisture Content, %	19.0	19.0	19.0	19.0	19.0	19.0		
Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			-
	Client:	GRI Port of Coos Bay Chan	nol Modification Praire	Date: By:	9/26/2016 PJ		-
	Boring:	B-31	B-31	В-31	РЈ В-31	B-31	B-31
	Sample:	R-5	R-5	R-5	R-5	R-5	R-5
	Depth, ft:	24	24	24	24	24	24
\	/isual Description:						
		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1 FOR A	NISOTROPIC		2	2	2
		FUR A	NISUTRUPIC	ROCK:		I	Ι
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None
Loading Orienta	tion Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
		SAN	PLE DIMENS	ONS		T	T
Width Perpendicular	to loading, W, mm	60	60	60	60	60	60
Length Perpendicula	ır to Loading, L, mm	30	30	30			
Diameter Parallel	to Loading, D, mm	60	60	60			
Diamete	r at Failure, D', mm		55	57	55	34	24
		S	TRENGTH DA	TA			
	Peak Load, P, kN	0.539	0.675	0.635	0.577	0.548	0.354
	Peak Load, P, lbs	121.2	151.7	142.8	129.7	123.2	79.6
Uncorr. Pt. Load Stren	igth Index,I _s , MPa	0.155	0.205	0.186	0.137	0.211	0.193
Uncorr. Pt. Load Strer	ngth Index,I _s , psi	22.5	29.7	26.9	19.9	30.6	28.0
Size Co	orrection Factor, F	1.08	1.06	1.07	1.12	1.01	0.93
Corr. Pt. Load Strength	n Index,I _{s(50)} , Mpa	0.17	0.22	0.20	0.15	0.21	0.18
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi		32	29	22	31	26
		MOIST	URE CONTEN	T DATA			
Moisture Co	ndition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
	Pan No.						
	Pan wt. (g)	22.42	22.42	22.42	22.42	22.42	22.42
	Total wet wt. (g)	191.16	191.16	191.16	191.16	191.16	191.16
	Total dry wt (g)	164.19	164.19	164.19	164.19	164.19	164.19
M	oisture Content, %	19.0	19.0	19.0	19.0	19.0	19.0
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	000 000			- 100				
CTL Job No:			Project No.:					
Client: Project Name:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•		
Boring:	B-31	B-31	B-31	B-31	B-31	B-31		
Sample:	R-5	R-5	R-5	R-5	R-5	R-5		
Depth, ft:	28	28	28	28	28	28		
Visual Description:	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Gray Rock	Very Dark Bluish Gray Rock	Gray Rock	Gray Rock		
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial		
Test Type ID		1	1	2	2	2		
	FOR A	NISOTROPIC	ROCK:		Ī			
Bedding Angle Relative to Axis	None	None	None	None	None	None		
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A		
	SAM	PLE DIMENS	ONS		T	T		
Width Perpendicular to loading, W, mm	60	60	60	60	60	60		
Length Perpendicular to Loading, L, mm	32	31	31					
Diameter Parallel to Loading, D, mm	60	60	60					
Diameter at Failure, D', mm	57	57	56	36	29	24		
STRENGTH DATA								
Peak Load, P, kN	0.584	0.405	0.407	0.285	0.314	0.254		
Peak Load, P, lbs	131.3	91.0	91.5	64.1	70.6	57.1		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.171	0.118	0.121	0.104	0.142	0.139		
Uncorr. Pt. Load Strength Index,I _s , psi	24.8	17.2	17.6	15.0	20.6	20.1		
Size Correction Factor, F	1.07	1.07	1.07	1.02	0.97	0.93		
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.18	0.13	0.13	0.11	0.14	0.13		
Corr. Pt. Load Strength Index,I _{s(50)} , psi		18	19	15	20	19		
	MOIST	URE CONTEN	T DATA		T	I		
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received		
Pan No.	710 110001100	710110001100	7.6 T.655.1754	710110001100	7.6 T.655.1754	710 110001100		
Pan wt. (g)	21.66	21.66	21.66	21.66	21.66	21.66		
Total wet wt. (g)	234.1	234.1	234.1	234.1	234.1	234.1		
Total dry wt (g)	200.37	200.37	200.37	200.37	200.37	200.37		
Moisture Content, %	18.9	18.9	18.9	18.9	18.9	18.9		
Comments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:			
Client:	GRI Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		-
Boring:		B-32	В-32	B-32	B-32	B-32
Sample:		R-1	R-1	R-1	R-1	R-1
Depth, ft:		2.5	2.5	2.5	2.5	2.5
Visual Description:	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock
	,	,	,	,	,	,
Test Type		Diametral	Diametral	Axial	Axial	Axial
Test Type ID		1 NICOTRODIC	1	2	2	2
	FUR A	NISOTROPIC	RUCK:		I	
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
	SAIV	IPLE DIMENS	UNO	Ι	Ι	<u> </u>
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	31	31			
Diameter Parallel to Loading, D, mm	60	60	60			
Diameter at Failure, D', mm		55	58	35	25	20
	<u> </u>	TRENGTH DA	I A		I	
Peak Load, P, kN	1.086	1.032	0.531	1.226	0.973	0.809
Peak Load, P, lbs	244.1	232.0	119.4	275.6	218.7	181.9
Uncorr. Pt. Load Strength Index,I _s , MPa	0.453	0.313	0.153	0.459	0.509	0.529
Uncorr. Pt. Load Strength Index,I _s , psi	65.6	45.4	22.1	66.5	73.9	76.8
Size Correction Factor, F	0.99	1.06	1.08	1.02	0.94	0.90
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.45	0.33	0.16	0.47	0.48	0.47
Corr. Pt. Load Strength Index,I _{s(50)} , psi		48	24	68	70	69
	MOIST	URE CONTEN	IDAIA		I	
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	19.22	19.22	19.22	19.22	19.22	19.22
Total wet wt. (g)	203.61	203.61	203.61	203.61	203.61	203.61
Total dry wt (g)	169	169	169	169	169	169
Moisture Content, %	23.1	23.1	23.1	23.1	23.1	23.1
Comments:			Invalid test- did not fail through both points.			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

	000 000					
CTL Job No:			Project No.:			
Client: Project Name:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•
Boring:		B-32	B-32	B-32	B-32	B-32
Sample:	R-1	R-1	R-1	R-1	R-1	R-1
Depth, ft:		6.5	6.5	6.5	6.5	6.5
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type		Diametral	Diametral	Axial	Axial	Axial
Test Type ID		NISOTROPIC	POCK:	2	2	2
	FOR A	MISOTROFIC	KOCK.			
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
	SAN	IPLE DIMENSI	UNS		Γ	
Width Perpendicular to loading, W, mm	59	59	59	59	59	59
Length Perpendicular to Loading, L, mm	31	30	30			
Diameter Parallel to Loading, D, mm	59	59	59			
Diameter at Failure, D', mm		54	55	39	29	21
	S ⁻	TRENGTH DA	TA		T	Г
Peak Load, P, kN	1.133	1.272	1.355	1.403	1.188	0.61
Peak Load, P, lbs	254.7	286.0	304.6	315.4	267.1	137.1
Uncorr. Pt. Load Strength Index,I _s , MPa	0.320	0.399	0.418	0.479	0.545	0.387
Uncorr. Pt. Load Strength Index,I _s , psi	46.4	57.9	60.6	69.5	79.1	56.1
Size Correction Factor, F		1.06	1.06	1.04	0.97	0.90
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa		0.42	0.44	0.50	0.53	0.35
Corr. Pt. Load Strength Index,I _{s(50)} , psi		61	64	72	77	51
	MOIST	URE CONTEN	T DATA		1	T
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	21.65	21.65	21.65	21.65	21.65	21.65
Total wet wt. (g)	158.87	158.87	158.87	158.87	158.87	158.87
Total dry wt (g)	133.08	133.08	133.08	133.08	133.08	133.08
Moisture Content, %	23.1	23.1	23.1	23.1	23.1	23.1
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

	000 000			= 100		
CTL Job No:			Project No.:			
Client:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/26/2016 PJ		•
Boring:	B-32	B-32	B-32	B-32	B-32	B-32
Sample:	R-2	R-2	R-2	R-2	R-2	R-2
Depth, ft:	8.5	8.5	8.5	8.5	8.5	8.5
Visual Description:	Very Dark Bluish Gray Rock					
Test Type	Axial	Diametral	Diametral	Diametral	Axial	Axial
Test Type ID		1	1	1	2	2
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
3		PLE DIMENSI		•		•
Width Perpendicular to loading, W, mm	61	60	60	60	60	60
Length Perpendicular to Loading, L, mm		30	30	30		
Diameter Parallel to Loading, D, mm		60	60	60		
Diameter at Failure, D', mm	26	54	50	57	25	30
, ,,		TRENGTH DA			• 	
Peak Load, P, kN	1.055	1.423	1.053	0.866	0.896	0.923
Peak Load, P, lbs	237.2	319.9	236.7	194.7	201.4	207.5
Uncorr. Pt. Load Strength Index,I _s , MPa	0.522	0.439	0.351	0.253	0.469	0.403
Uncorr. Pt. Load Strength Index,I _s , psi	75.8	63.7	50.9	36.7	68.0	58.4
Size Correction Factor, F	0.95	1.06	1.04	1.07	0.94	0.98
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.50	0.47	0.37	0.27	0.44	0.39
Corr. Pt. Load Strength Index,I _{s(50)} , psi	72	68	53	39	64	57
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received					
	AS NECEIVEU	AS NECEIVEU	AS NECEIVED	AS NECEIVED	AS NECEIVED	AS NECEIVED
Pan No.						
Pan wt. (g)	20.56	20.56	20.56	20.56	20.56	20.56
Total wet wt. (g)	186.22	186.22	186.22	186.22	186.22	186.22
Total dry wt (g)	153.54	153.54	153.54	153.54	153.54	153.54
Moisture Content, %	24.6	24.6	24.6	24.6	24.6	24.6
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			
	Client:	Port of Coos Bay Chan	nol Modification Praire	Date: By:	9/27/2016 PJ		-
	Boring:	B-32	B-32	B-32	B-32	B-32	B-32
	Sample:	R-2	R-2	R-2	R-2	R-2	R-2
	Depth, ft:		10.5	10.5	10.5	10.5	10.5
,	Visual Description:						
		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1 FOR A	NISOTROPIC		2	2	2
		FUR A	NISOTROPIC	ROCK:		Π	I
Bedding Ar	ngle Relative to Axis	None	None	None	None	None	None
Loading Orienta	ition Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
		SAN	PLE DIMENS	ONS			
Width Perpendicular	to loading, W, mm	60	60	60	60	60	60
Length Perpendicula	ar to Loading, L, mm	30	30	30			
Diameter Parallel	to Loading, D, mm	60	60	60			
Diamete	r at Failure, D', mm	56	51	58	28	32	24
		S	TRENGTH DA	ΓΑ			
	Peak Load, P, kN	1.099	1.104	1.068	1.046	1.34	0.895
	Peak Load, P, lbs	247.1	248.2	240.1	235.2	301.2	201.2
Uncorr. Pt. Load Strer	ngth Index,I _s , MPa	0.327	0.361	0.307	0.489	0.548	0.488
Uncorr. Pt. Load Strei	ngth Index,I _s , psi	47.4	52.3	44.5	70.9	79.5	70.8
	orrection Factor, F	1.07	1.05	1.08	0.97	0.99	0.93
Corr. Pt. Load Strengtl	, ,		0.38	0.33	0.47	0.55	0.46
Corr. Pt. Load Strengt	h Index,I _{s(50)} , psi		55	48	68	79	66
		MOIST	URE CONTEN	T DATA		7	I
Moisture Co	ndition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
	Pan No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, to 1 to 30.10 u	,	, io 1 (000), io u	,	,
	Pan wt. (g)	19.67	19.67	19.67	19.67	19.67	19.67
	Total wet wt. (g)	207.5	207.5	207.5	207.5	207.5	207.5
	Total dry wt (g)	172.4	172.4	172.4	172.4	172.4	172.4
M	oisture Content, %	23.0	23.0	23.0	23.0	23.0	23.0
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

	CTL Job No:			Project No.:			
	Client:			Date:	9/27/2016		
		Port of Coos Bay Chan		B- 32	PJ B-32	D 22	B-32
	Boring: Sample:	R-32	B-32 R-3	R-32	R-32	B-32 R-3	R-3
	Depth, ft:	12.5	12.5	12.5	12.5	12.5	12.5
,	Visual Description:	Very Dark	Very Dark	Very Dark	Very Dark	Very Dark	Very Dark
		Greenish Gray	Greenish Gray	Greenish Gray	Greenish Gray	Greenish Gray	Greenish Gray
		Rock	Rock	Rock	Rock	Rock	Rock
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1	1	1	2	2	2
	ī	FOR A	NISOTROPIC	ROCK:			
Bedding A	ngle Relative to Axis	None	None	None	None	None	None
Bedding A	ligie Nelative to Axis	None	None	None	None	None	None
Loading Orienta	ation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
		SAM	PLE DIMENSI	ONS			
Middle Daman diada	. 4 - 1	04	04	04	04	04	04
Width Perpendicular	r to loading, VV, mm	61	61	61	61	61	61
Length Perpendicula	ar to Loading, L, mm	30	31	30			
Diameter Paralle	el to Loading, D, mm	61	61	61			
Diamete	er at Failure, D', mm	50	49	56	35	22	24
	, ,		TRENGTH DA				
	Peak Load, P, kN	1.036	0.722	1.16	1.24	0.953	0.816
	Peak Load, P, lbs	232.9	162.3	260.8	278.8	214.2	183.4
Linear Dt. Land Ctron							
Uncorr. Pt. Load Strer	ngin index,i _s , iviPa	0.340	0.242	0.340	0.456	0.558	0.438
Uncorr. Pt. Load Stre	ngth Index,I _s , psi	49.3	35.0	49.3	66.2	80.9	63.5
Size Co	orrection Factor, F	1.05	1.04	1.07	1.02	0.92	0.94
Corr. Pt. Load Strengt	th Index,I _{s(50)} , Mpa	0.36	0.25	0.36	0.46	0.51	0.41
	, ,						
Corr. Pt. Load Streng	th Index,I _{s(50)} , psi	52	36	53	67	74	59
		MOIST	URE CONTEN	T DATA			
Moisture Co	ondition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Woldtard		710 110001100	710110001100	710110001100	710110001700	710110001100	7.6 1.6001704
	Pan No.						
	Pan wt. (g)	20.46	20.46	20.46	20.46	20.46	20.46
	ran wt. (9)	20.46	20.46	ZU. 4 0	20.46	20.46	20.46
	Total wet wt. (g)	213.28	213.28	213.28	213.28	213.28	213.28
	Takal da (/)	475.0	475.0	475.0	475.0	475.0	475.0
	Total dry wt (g)	175.9	175.9	175.9	175.9	175.9	175.9
M	loisture Content, %	24.0	24.0	24.0	24.0	24.0	24.0
	Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:			
Client:	GRI Port of Coos Bay Chan	nol Modification During	Date:	9/28/2016 PJ		
Boring:	Port of Coos Bay Chan B-32	nel Modification Project B-32	B-32	РЈ В-32	I	
Sample:	R-4	R-4	R-4	R-4		
Depth, ft:	16.5	16.5	16.5	16.5		
Visual Description:	Very Dark	Very Dark	Very Dark	Very Dark		
	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock		
	NOCK	NOCK	NOCK	NOCK		
Total Time	D:t1	A: - I	A: - I	A: - I		
Test Type Test Type ID	Diametral 1	Axial 2	Axial 2	Axial 2		
Test Type ID	•	NISOTROPIC		۷	<u> </u>	
Bedding Angle Relative to Axis	None	None	None	None		
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A		
Loading Offeritation (Ver. to Bedding		IPLE DIMENSI		IN/A		
	C. 111					
Width Perpendicular to loading, W, mm	59	59	59	57		
Length Perpendicular to Loading, L, mm	30					
Length respendicular to Loading, E, min	30					
Diameter Parallel to Loading, D, mm	59					
Diameter at Failure, D', mm	55	35	27	30		
Diameter at Failure, D, mini		I <u> </u>		30		
Peak Load, P, kN	1.129	1.19	1.288	1.303		
Pook Load P lbs	252.0	267.5	289.6	292.9		
Peak Load, P, lbs		207.5	209.0	292.9		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.348	0.453	0.635	0.598		
Uncorr. Pt. Load Strength Index,I _s , psi	50.5	65.6	92.1	86.8		
Oncom: I ii zoda oli eligar maex,ig, por	30.3	03.0	32.1	00.0		
Size Correction Factor, F	1.06	1.01	0.95	0.97		
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.37	0.46	0.61	0.58		
Con. 1 t. Load Otterigit index, i _{s(50)} , impa	0.37	0.40	0.01	0.50		
Corr. Pt. Load Strength Index,I _{s(50)} , psi	54	66	88	84		
	MOIST	URE CONTEN	T DATA			
Maintaine On 188 CO	A. D	A. D	A. D	A. D		
Moisture Condition of Specimen	As Received	As Received	As Received	As Received		
Pan No.						
			10.15	15.15		
Pan wt. (g)	19.46	19.46	19.46	19.46		
Total wet wt. (g)	185.07	185.07	185.07	185.07		
Total dry wt (g)	149.63	149.63	149.63	149.63		
Moisture Content, %	27.2	27.2	27.2	27.2		
more than the second of the se						
Comments:						
Comments.						
<u> </u>	L	i				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: 253-008	CTI Joh No. 922 000									
Project Name: Project Name				Project No.:			•			
Boring R-32			nel Modification Project				-			
R-4						B-32	B-32			
Depth He Test Type Diametral Diametral Diametral Test Type Diametral Test Type Diametral Dia		R-4								
Gray Rock Gray	Depth, ft:	19.5	19.5	19.5	19.5	19.5	19.5			
Test Type Diametral Diametral Diametral Axial Axial Axial										
Test Type ID 1		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
Test Type ID 1										
Bedding Angle Relative to Axis None No			Diametral	Diametral						
Bedding Angle Relative to Axis None No	Test Type ID		1	1	2	2	2			
N/A		FOR A	NISOTROPIC	ROCK:		1	Γ			
SAMPLE DIMENSIONS	Bedding Angle Relative to Axis	None	None	None	None	None	None			
Width Perpendicular to loading, W, mm 59 59 59 59 59 59 59	Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A			
Length Perpendicular to Loading, L, mm 30 31 30 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 30						.				
Diameter Parallel to Loading, D, mm 59 59 59 59 59 59 59	Width Perpendicular to loading, W, mm	59	59	59	59	59	59			
Diameter at Failure, D', mm 56 57 55 24 31 27	Length Perpendicular to Loading, L, mm	30	31	30						
Peak Load, P, kN 0.972 0.634 0.976 0.642 0.87 0.579	Diameter Parallel to Loading, D, mm	59	59	59						
Peak Load, P, kN 0.972 0.634 0.976 0.642 0.87 0.579	Diameter at Failure, D', mm				24	31	27			
Peak Load, P, lbs 218.5 142.5 219.4 144.3 195.6 130.2			I NEIGO III DA							
Uncorr. Pt. Load Strength Index,I _s , MPa Uncorr. Pt. Load Strength Index,I _s , psi Uncorr. Pt. Load Strength Index,I _s , psi 42.7 27.3 43.6 51.6 54.2 41.4 Size Correction Factor, F 1.06 1.07 1.06 0.93 0.98 0.95 Corr. Pt. Load Strength Index,I _{s(50)} , Mpa 0.31 0.20 0.32 0.33 0.37 0.27 Corr. Pt. Load Strength Index,I _{s(50)} , psi 45 29 46 48 53 40 MOISTURE CONTENT DATA Moisture Condition of Specimen Pan No. Pan wt. (g) 122.27 22.27	Peak Load, P, kN	0.972	0.634	0.976	0.642	0.87	0.579			
Uncorr. Pt. Load Strength Index, I _s , psi										
Size Correction Factor, F 1.06 1.07 1.06 0.93 0.98 0.95	Uncorr. Pt. Load Strength Index,I _s , MPa	0.294	0.189	0.301	0.356	0.374	0.285			
Corr. Pt. Load Strength Index, I _{s(50)} , Mpa 0.31 0.20 0.32 0.33 0.37 0.27 Corr. Pt. Load Strength Index, I _{s(50)} , psi 45 29 46 48 53 40 MOISTURE CONTENT DATA Moisture Condition of Specimen Pan No. As Received As Received As Received Pan No. As Received Pan No. As Received Pan No. As Received Pan No. Pan wt. (g) 22.27	Uncorr. Pt. Load Strength Index,I _s , psi	42.7	27.3	43.6	51.6	54.2	41.4			
Corr. Pt. Load Strength Index,I _{s(50)} , psi 45 29 46 48 53 40 MOISTURE CONTENT DATA Moisture Condition of Specimen As Received 4s Received As Received As Received As Received 4s Received 4s Received 4s Received 4s Received 4s Received	·		1.07	1.06	0.93	0.98	0.95			
MOISTURE CONTENT DATA Moisture Condition of Specimen As Received	Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.31	0.20	0.32	0.33	0.37	0.27			
Moisture Condition of Specimen As Received As	Corr. Pt. Load Strength Index,I _{s(50)} , psi	45	29	46	48	53	40			
Pan No. Pan wt. (g) 22.27 22.27 22.27 22.27 22.27 22.27 Total wet wt. (g) 139.28 139.28 139.28 139.28 139.28 139.28 Total dry wt (g) 116.9 116.9 116.9 116.9 116.9 116.9 Moisture Content, % 23.7 23.7 23.7 23.7 23.7 23.7		MOIST	URE CONTEN	T DATA						
Pan wt. (g) 22.27 22.27 22.27 22.27 22.27 22.27 22.27 Total wet wt. (g) 139.28 139.28 139.28 139.28 139.28 139.28 Total dry wt (g) 116.9 116.9 116.9 116.9 116.9 116.9 Moisture Content, % 23.7 23.7 23.7 23.7 23.7 23.7	Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan wt. (g) 22.27 22.27 22.27 22.27 22.27 22.27 22.27 Total wet wt. (g) 139.28 139.28 139.28 139.28 139.28 139.28 Total dry wt (g) 116.9 116.9 116.9 116.9 116.9 116.9 Moisture Content, % 23.7 23.7 23.7 23.7 23.7 23.7	Pan No.									
Total dry wt (g) 116.9 116.9 116.9 116.9 116.9 116.9 116.9 116.9 123.7 23.7 23.7 23.7 23.7 23.7 23.7		22.27	22.27	22.27	22.27	22.27	22.27			
Moisture Content, % 23.7 23.7 23.7 23.7 23.7 23.7 23.7	Total wet wt. (g)	139.28	139.28	139.28	139.28	139.28	139.28			
	Total dry wt (g)	116.9	116.9	116.9	116.9	116.9	116.9			
Comments:	Moisture Content, %	23.7	23.7	23.7	23.7	23.7	23.7			
Test types: 1. Diametral 2. Avial 3. Block 1. Irregular Lump										

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:			Date:	9/26/2016		
	Port of Coos Bay Chan		By:		ı	
Boring: Sample:	B-33 R-1	B-33 R-1	B-33 R-1	B-33 R-1		
Depth, ft:	2	2	2	2		
Visual Description:	Very Dark	Very Dark	Very Dark	Very Dark		
	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock		
	ROCK	ROCK	ROCK	ROCK		
Test Type	Diametral	Diametral	Axial	Axial		
Test Type ID	1	1	2	2		
	FOR A	NISOTROPIC	ROCK:	Ī		
Bedding Angle Relative to Axis	None	None	None	None		
		None	None	None		
Loading Orientation Rel. to Bedding		N/A	N/A	N/A		
	SAN	PLE DIMENSI	ONS			
Width Perpendicular to loading, W, mm	60	60	60	60		
	0.4	0.4				
Length Perpendicular to Loading, L, mm	31	31				
Diameter Parallel to Loading, D, mm	60	60				
Diamentary at Failure DV years	40	40	40	2.4		
Diameter at Failure, D', mm		48 TRENGTH DA	40 ΓΔ	34		
		INCHO III DA				
Peak Load, P, kN	1.276	1.496	1.275	1.522		
Peak Load, P, lbs	286.9	336.3	286.6	342.2		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.434	0.519	0.417	0.586		
Uncorr. Pt. Load Strength Index,I _s , psi	62.9	75.3	60.5	85.0		
		4.00	4.05	4.04		
Size Correction Factor, F		1.03	1.05	1.01		
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.45	0.54	0.44	0.59		
Corr. Pt. Load Strength Index,I _{S(50)} , psi	65	78	63	86		
20 20aa 0gaox,,5(50), po.		URE CONTEN				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received		
Pan No.						
Pan wt. (g)	21.77	21.77	21.77	21.77		
Total wet wt. (g)	220.9	220.9	220.9	220.9		
Total dry wt (g)	182.5	182.5	182.5	182.5		
Moisture Content, %	23.9	23.9	23.9	23.9		
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No: Client:			Project No.: Date:	5128 9/27/2016		•			
	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/2//2016 PJ		•			
Boring:		B-33	B-33	B-33	B-33	B-33			
Sample:		R-2	R-2	R-2	R-2	R-2			
Depth, ft:		6	6	6	6	6			
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
Test Type		Diametral	Diametral	Axial	Axial	Axial			
Test Type ID		NISOTROPIC	BUCK.	2	2	2			
	FOR A	MISOTROFIC	NOCK.						
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A IPLE DIMENSI	N/A	N/A	N/A	N/A			
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	30	30	30						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm		50 TRENGTH DA	50 TA	30	33	27			
	<u></u>	IKLINGTITUA							
Peak Load, P, kN	1.169	1.161	1.298	1.508	1.821	1.424			
Peak Load, P, lbs	262.8	261.0	291.8	339.0	409.4	320.1			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.406	0.387	0.433	0.658	0.722	0.690			
Uncorr. Pt. Load Strength Index,I _s , psi	58.9	56.1	62.8	95.4	104.8	100.1			
Size Correction Factor, F	1.03	1.04	1.04	0.98	1.00	0.96			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.42	0.40	0.45	0.65	0.72	0.66			
Corr. Pt. Load Strength Index,I _{S(50)} , psi		58	65	94	105	96			
	MOIST	URE CONTEN	T DATA		Γ	T			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan No.									
Pan wt. (g)	22.07	22.07	22.07	22.07	22.07	22.07			
Total wet wt. (g)	112.17	112.17	112.17	112.17	112.17	112.17			
Total dry wt (g)	94.6	94.6	94.6	94.6	94.6	94.6			
Moisture Content, %	24.2	24.2	24.2	24.2	24.2	24.2			
Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

				5128						
CTL Job No:			Project No.:							
Client: Project Name:	Port of Coos Bay Chan	nel Modification Project	Date: By:							
Boring:	B-33	B-33	B-33	B-33	B-33	B-33				
Sample:	R-2	R-2	R-2	R-2	R-2	R-2				
Depth, ft:	9	9	9	9	9	9				
Visual Description:	Very Dark									
	Greenish Gray Gray Rock									
	Gray Rock									
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial				
Test Type ID	I I		POCK:	2	2	2				
	FOR ANISOTROPIC ROCK:									
Bedding Angle Relative to Axis	None	None	None	None	None	None				
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A				
SAMPLE DIMENSIONS										
Width Perpendicular to loading, W, mm	60	60	60	60	60	60				
Triality dipolialization to locating, 11, 11111		- 55			- 00					
Length Perpendicular to Loading, L, mm	30	30	30							
Diameter Perallel to Leading D. mm	60	60	60							
Diameter Parallel to Loading, D, mm	60	60	60							
Diameter at Failure, D', mm	56	50	52	33	36	29				
		TRENGTH DA								
		4.0=0	4 000	4 000		4 00-				
Peak Load, P, kN	0.789	1.376	1.032	1.289	1.566	1.287				
Peak Load, P, lbs	177.4	309.3	232.0	289.8	352.1	289.3				
Uncorr. Pt. Load Strength Index,I _s , MPa	0.235	0.459	0.331	0.511	0.569	0.581				
Uncorr. Pt. Load Strength Index,I _s , psi	34.1	66.5	48.0	74.2	82.6	84.3				
Size Correction Factor, F	1.07	1.04	1.05	1.00	1.02	0.97				
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.25	0.48	0.35	0.51	0.58	0.57				
Con. 1 t. Load Strongth MacX,1 _S (50), Mpd	0.20	0.40	0.00	0.01	0.00	0.07				
Corr. Pt. Load Strength Index,I _{s(50)} , psi	36	69	50	74	84	82				
	MOIST	URE CONTEN	T DATA							
M : 4 O III 10 :	• 6		• 6	4 D : 1						
Moisture Condition of Specimen	As Received									
Pan No.										
Pan wt. (g)	20.33	20.33	20.33	20.33	20.33	20.33				
Total wet wt. (g)	171.31	171.31	171.31	171.31	171.31	171.31				
rotal wet wi. (g)	17 1.01	17 1.01	17 1.01	17 1.01	17 1.01	77 1.01				
Total dry wt (g)	138.4	138.4	138.4	138.4	138.4	138.4				
Maiatana Cantant N	07.0	07.0	07.0	07.0	07.0	07.0				
Moisture Content, %	27.9	27.9	27.9	27.9	27.9	27.9				
Comments:										

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No:	022 000		Duningt No.	5128					
CIL JOB NO:			Project No.: Date:	9/28/2016		•			
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		•			
Boring:	B-33	B-33	B-33	B-33	B-33	B-33			
Sample:	R-3	R-3	R-3	R-3	R-3	R-3			
Depth, ft:	13	13	13	13	13	13			
Visual Description:	Very Dark Greenish Gray Rock								
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial			
Test Type ID	FOP A	NISOTROPIC	POCK:	2	2	2			
	FOR A	NISOTROPIC	ROCK.						
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A IPLE DIMENSI	N/A	N/A	N/A	N/A			
SAMI LE DIMENSIONS									
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	30	30	30						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm	58	54 TRENGTH DA	53	37	32	33			
	<u> </u>	IKENGIH DA	IA						
Peak Load, P, kN	1.175	1.053	1.307	1.167	1.463	1.384			
Peak Load, P, lbs	264.2	236.7	293.8	262.4	328.9	311.1			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.338	0.325	0.411	0.413	0.598	0.549			
Uncorr. Pt. Load Strength Index,I _s , psi	49.0	47.1	59.6	59.9	86.8	79.6			
Size Correction Factor, F	1.08	1.06	1.06	1.03	0.99	1.00			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.36	0.34	0.43	0.42	0.60	0.55			
Corr. Pt. Load Strength Index,I _{s(50)} , psi		50	63	62	86	80			
	MOIST	URE CONTEN	IDAIA						
Moisture Condition of Specimen	As Received								
Pan No.									
Pan wt. (g)	22.91	22.91	22.91	22.91	22.91	22.91			
Total wet wt. (g)	239.2	239.2	239.2	239.2	239.2	239.2			
Total dry wt (g)	194.56	194.56	194.56	194.56	194.56	194.56			
Moisture Content, %	26.0	26.0	26.0	26.0	26.0	26.0			
Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

	222 222								
CTL Job No:			Project No.:						
Client:	Port of Coos Bay Chan	nel Modification Project	Date: By:	9/27/2016 PJ		•			
Boring:		B-33	B-33	B-33	B-33	B-33			
Sample:	R-5	R-5	R-5	R-5	R-5	R-5			
Depth, ft:		16	16	16	16	16			
Visual Description:									
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock			
Test Type		Diametral	Diametral	Axial	Axial	Axial			
Test Type ID		1 NICOTRODIC	1	2	2	2			
FOR ANISOTROPIC ROCK:									
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A			
	SAN	PLE DIMENS	ONS			-			
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	30	31	30						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm		56	54	30	29	22			
	S	TRENGTH DA	TA						
Peak Load, P, kN	0.939	1.578	1.307	0.522	0.88	0.907			
Peak Load, P, lbs	211.1	354.7	293.8	117.4	197.8	203.9			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.279	0.470	0.403	0.228	0.397	0.540			
Uncorr. Pt. Load Strength Index,I _s , psi	40.5	68.1	58.5	33.0	57.6	78.3			
Size Correction Factor, F	1.07	1.07	1.06	0.98	0.97	0.91			
Corr. Pt. Load Strength Index, I _{s(50)} , Mpa	0.30	0.50	0.43	0.22	0.39	0.49			
Corr. Pt. Load Strength Index,I _{s(50)} , psi		73	62	32	56	72			
	MOIST	URE CONTEN	IDAIA		ı				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan No.									
Pan wt. (g)	20.7	20.7	20.7	20.7	20.7	20.7			
Total wet wt. (g)	107.86	107.86	107.86	107.86	107.86	107.86			
Total dry wt (g)	87.8	87.8	87.8	87.8	87.8	87.8			
Moisture Content, %	29.9	29.9	29.9	29.9	29.9	29.9			
Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	022 000		Duningt No.	5128					
CIL JOB NO:			Project No.: Date:	9/28/2016		•			
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		•			
Boring:	B-33	B-33	B-33	B-33	B-33	B-33			
Sample:	R-6	R-6	R-6	R-6	R-6	R-6			
Depth, ft:	20	20	20	20	20	20			
Visual Description:	Very Dark Greenish Gray Rock								
Tota	Diama dual	Diama dual	Diama dual	Assisal	Assisal	Avial			
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2			
Test Type ID	FOR A	NISOTROPIC	ROCK:			2			
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A			
SAMPLE DIMENSIONS									
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	30	30	33						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm	50	52 TRENGTH DA	55	36	36	35			
	<u> </u>	IKENGIH DA	IA						
Peak Load, P, kN	1.004	1.071	1.104	1.18	1.245	1.042			
Peak Load, P, lbs	225.7	240.8	248.2	265.3	279.9	234.3			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.335	0.343	0.335	0.429	0.453	0.390			
Uncorr. Pt. Load Strength Index,I _s , psi	48.5	49.8	48.5	62.2	65.7	56.5			
Size Correction Factor, F	1.04	1.05	1.06	1.02	1.02	1.02			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.35	0.36	0.36	0.44	0.46	0.40			
Corr. Pt. Load Strength Index, I _{S(50)} , psi	51	52	52	64	67	57			
	MOIST	URE CONTEN	T DATA						
Moisture Condition of Specimen	As Received								
Pan No.	As Neceived								
Pan wt. (g)	21.98	21.98	21.98	21.98	21.98	21.98			
Total wet wt. (g)		216.83	216.83	216.83	216.83	216.83			
Total dry wt (g)		171.35	171.35	171.35	171.35	171.35			
Moisture Content, %		30.4	30.4	30.4	30.4	30.4			
moisture content, /6	30.7		30.7			30.7			
Comments:									
Comments.									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No: Client:			Project No.:	Project No.: 5128 Date: 9/26/2016							
	OKI Port of Coos Bay Chan	nel Modification Project	Date:								
Boring:	B-33	B-33	B-33	B-33	B-33	B-33					
Sample:	R-7	R-7	R-7	R-7	R-7	R-7					
Depth, ft:	21	21	21	21	21	21					
Visual Description:	Very Dark Greenish Gray Rock										
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial					
Test Type ID	1	1	1	2	2	2					
	FOR ANISOTROPIC ROCK:										
Bedding Angle Relative to Axis	None	None	None	None	None	None					
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A					
	SAM	PLE DIMENSI	ONS								
Width Perpendicular to loading, W, mm	60	60	60	60	60	60					
Length Perpendicular to Loading, L, mm	32	30	30								
Diameter Parallel to Loading, D, mm	60	60	60								
Diameter at Failure, D', mm	54	55	49	38	35	28					
	S	TRENGTH DA	ГА								
Peak Load, P, kN	1.115	1.099	0.98	1.295	0.976	0.834					
Peak Load, P, lbs	250.7	247.1	220.3	291.1	219.4	187.5					
Uncorr. Pt. Load Strength Index,I _s , MPa	0.344	0.333	0.333	0.446	0.365	0.390					
Uncorr. Pt. Load Strength Index,I _s , psi	49.9	48.3	48.3	64.7	52.9	56.5					
Size Correction Factor, F	1.06	1.06	1.04	1.03	1.02	0.97					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.36	0.35	0.35	0.46	0.37	0.38					
Corr. Pt. Load Strength Index,I _{s(50)} , psi	53	51	50	67	54	55					
	MOIST	URE CONTEN	T DATA								
Moisture Condition of Specimen	As Received										
Pan No.	7.5 1.6561764	, to 1 to o o i v o u	, to 1 toosivou	, to 1 to oblived	, to 1 to o i v o u	, to 1 to on vou					
Pan wt. (g)	19.92	19.92	19.92	19.92	19.92	19.92					
Total wet wt. (g)	212.66	212.66	212.66	212.66	212.66	212.66					
Total dry wt (g)	177.1	177.1	177.1	177.1	177.1	177.1					
Moisture Content, %	22.6	22.6	22.6	22.6	22.6	22.6					
Comments:											

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:			
Client:	GRI Port of Coos Bay Chan	nol Modification Praire	Date: By:	9/27/2016 PJ		•
Boring:	B-33	B-33	В-33	B-33	B-33	B-33
Sample:		R-8	R-8	R-8	R-8	R-8
Depth, ft:	26	26	26	26	26	26
Visual Description:						
	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type Test Type ID		Diametral	Diametral	Axial 2	Axial 2	Axial 2
Test Type ID		NISOTROPIC	ROCK.			
	IONA	Moorkorio	NOOK.		Ι	
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding		N/A IPLE DIMENSI	N/A	N/A	N/A	N/A
	<u> </u>					
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	32	30	31			
Diameter Parallel to Loading, D, mm	60	60	60			
Diameter at Failure, D', mm		52	49	34	25	32
	<u> </u>	TRENGTH DA	I A		I	
Peak Load, P, kN	1.115	1.057	1.194	1.313	1.004	0.987
Peak Load, P, lbs	250.7	237.6	268.4	295.2	225.7	221.9
Uncorr. Pt. Load Strength Index,I _s , MPa	0.364	0.339	0.406	0.506	0.526	0.404
Uncorr. Pt. Load Strength Index,I _s , psi	52.8	49.1	58.9	73.3	76.2	58.6
Size Correction Factor, F	1.05	1.05	1.04	1.01	0.94	0.99
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.38	0.36	0.42	0.51	0.49	0.40
Corr. Pt. Load Strength Index,I _{s(50)} , psi		52	61	74	72	58
	MOIST	URE CONTEN	IDAIA		I	
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.82	22.82	22.82	22.82	22.82	22.82
Total wet wt. (g)	136.16	136.16	136.16	136.16	136.16	136.16
Total dry wt (g)	113.3	113.3	113.3	113.3	113.3	113.3
Moisture Content, %	25.3	25.3	25.3	25.3	25.3	25.3
Comments:				Invalid test. Did not fail through both points.		

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128				
Client:			Date:	9/27/2016				
		nel Modification Project	By:	PJ				
Boring:	B-40	B-40	B-40	1.0				
Sample:	R-1	R-1	R-1					
Depth, ft:	3	3	3			}		
Visual Description:	Very Dark	Very Dark	Very Dark			İ		
	Greenish Gray	Greenish Gray	Greenish Gray			İ		
	Rock	Rock	Rock			İ		
						İ		
						I		
						I		
						I		
Toot Type	Diametral	Avial	Avial			I		
Test Type	Diametral	Axial	Axial					
Test Type ID	1	2	2					
	FOR A	NISOTROPIC	ROCK:					
Bedding Angle Relative to Axis	None	None	None			İ		
Loading Orientation Rel. to Bedding	N/A	N/A	N/A			İ		
		PLE DIMENSI						
OAUN EL BINIERO NO								
Width Perpendicular to loading, W, mm	60	60	60			I		
width Perpendicular to loading, w, mini	60	00	00					
Lawretta Dannan diantan ta Laadin ni Lusur	20					I		
Length Perpendicular to Loading, L, mm	30					}		
5: . 5	00					I		
Diameter Parallel to Loading, D, mm	60					 		
_, , , , _ , _ ,						I		
Diameter at Failure, D', mm	59	37	34			l		
	S ⁻	TRENGTH DA	TA					
Peak Load, P, kN	0.457	0.408	0.381			İ		
Peak Load, P, lbs	102.7	91.7	85.7			İ		
Uncorr. Pt. Load Strength Index,I _s , MPa	0.129	0.144	0.147			I		
Uncorr. Pt. Load Strength Index,I _s , psi	18.7	20.9	21.3			I		
υ , 3, I								
Size Correction Factor, F	1.08	1.03	1.01			I		
CIZE CONTESTION T dotor, 1	1.00	1.00	1.01					
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.14	0.15	0.15			I		
			55		 			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	20	22	21			İ		
001111 ti 2000 0ti 011gtii 11100x,1.g(50), poi						1		
	MOIST	URE CONTEN	IDAIA					
						Ì		
Moisture Condition of Specimen	As Received	As Received	As Received			<u> </u>		
						I		
Pan No.						İ		
Pan wt. (g)	20.93	20.93	20.93			I		
Total wet wt. (g)	187.56	187.56	187.56			İ		
(3)								
Total dry wt (g)	160.7	160.7	160.7			Ĭ		
Moisture Content, %	19.2	19.2	19.2			Ĭ		
moisture content, 70	1012				1			
						Ĭ		
						Ĭ		
						Ì		
_						Ĭ		
Comments:						Ì		
						Ĭ		
						Ĭ		
						Ì		

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128					
Client:			Date:	9/26/2016					
Project Name: Boring:	Port of Coos Bay Chan	nel Modification Project B-40	By: B-40	PJ B-40	B-40	B-40			
Sample:	R-1	R-1	R-1	R-1	R-1	R-1			
Depth, ft:	6	6	6	6	6	6			
Visual Description:	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock			
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial			
Test Type ID		1	1	2	2	2			
FOR ANISOTROPIC ROCK:									
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A			
	SAN	PLE DIMENSI	ONS		<u> </u>				
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	30	31	30						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm		57 TRENGTH DA	59 ГА	26	31	20			
Peak Load, P, kN		0.785	0.602	0.395	0.529	0.201			
Peak Load, P, lbs	113.3	176.5	135.3	88.8	118.9	45.2			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.145	0.230	0.170	0.199	0.223	0.132			
Uncorr. Pt. Load Strength Index,I _s , psi	21.0	33.3	24.7	28.8	32.4	19.1			
Size Correction Factor, F	1.08	1.07	1.08	0.95	0.99	0.90			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.16	0.25	0.18	0.19	0.22	0.12			
Corr. Pt. Load Strength Index,I _{S(50)} , psi		36	27	27	32	17			
	MOIST	URE CONTEN	T DATA		<u> </u>				
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received			
Pan No.									
Pan wt. (g)	22.28	22.28	22.28	22.28	22.28	22.28			
Total wet wt. (g)	226.06	226.06	226.06	226.06	226.06	226.06			
Total dry wt (g)	193.8	193.8	193.8	193.8	193.8	193.8			
Moisture Content, %	18.8	18.8	18.8	18.8	18.8	18.8			
Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:			Date:	9/27/2016		
Project Name: Boring:	Port of Coos Bay Chan B-40	nel Modification Project B-40	B- 40	PJ B-40	B-40	B-40
Sample:	R-2	R-2	R-2	R-2	R-2	R-2
Depth, ft:	11	11	11	11	11	11
Visual Description:	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock
	Gray Rook	Gray Rook	Gray Rook	Gray Rook	Gray Rook	Gray Rook
	-	-	.			
Test Type Test Type ID		Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2
100(1)50 (12		NISOTROPIC	ROCK:	<u>-</u>	_	<u>-</u>
But A But A						
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
	SAN	IPLE DIMENSI	ONS		<u> </u>	
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	30			
		30	30			
Diameter Parallel to Loading, D, mm	60	60	60			
Diameter at Failure, D', mm		55	58	30	30	32
	S	TRENGTH DA	ГА			
Peak Load, P, kN	0.552	0.711	0.626	0.158	0.358	0.362
Peak Load, P, lbs	124.1	159.8	140.7	35.5	80.5	81.4
Uncorr. Pt. Load Strength Index,I _s , MPa	0.161	0.215	0.180	0.069	0.156	0.148
Uncorr. Pt. Load Strength Index,I _s , psi	23.4	31.2	26.1	10.0	22.7	21.5
Size Correction Factor, F	1.07	1.06	1.08	0.98	0.98	0.99
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.17	0.23	0.19	0.07	0.15	0.15
Corr. Pt. Load Strength Index,I _{s(50)} , psi	25	33	28	10	22	21
7 5(00)/1		URE CONTEN	T DATA			
Moisture Condition of Specimen	As Bossinad	As Possined	As Possined	As Received	As Received	As Possived
ivioisture Condition of Specimen	As Received	As Received	As Received	AS MECEIVED	AS KECEIVED	As Received
Pan No.						
Pan wt. (g)	22.39	22.39	22.39	22.39	22.39	22.39
Total wet wt. (g)	156.9	156.9	156.9	156.9	156.9	156.9
Total dry wt (g)	135.6	135.6	135.6	135.6	135.6	135.6
Moisture Content, %		18.8	18.8	18.8	18.8	18.8
Comments:						
İ			1		1	

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

		823-008		Project No.:			<u></u>		
	Client:	GRI Port of Coos Bay Chan	nol Modification Dunis at	Date: By:	9/27/2016 PJ		<u>-</u>		
	vame: oring:		B-40	B-40	B-40	B-40	B-40		
	mple:		R-3	R-3	R-3	R-3	R-3		
Del	oth, ft:	16	16	16	16	16	16		
Visual Descri	ption:	Very Dark Bluish							
		Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock		
	t Type		Diametral	Diametral	Axial	Axial	Axial		
Test T	ype ID		NICOTRODIC	1 POCK:	2	2	2		
FOR ANISOTROPIC ROCK:									
Bedding Angle Relative	o Axis	None	None	None	None	None	None		
Loading Orientation Rel. to B	edding		N/A	N/A	N/A	N/A	N/A		
		SAM	PLE DIMENS	IONS					
Width Perpendicular to loading, W	, mm	60	60	60	60	60	60		
Length Perpendicular to Loading,	L, mm	30	31	30					
Diameter Parallel to Loading, [), mm	60	60	60					
Diameter at Failure, D	', mm	57	58	56	30	27	26		
		S	TRENGTH DA	TA					
Peak Load	P, kN	0.666	0.605	0.406	0.357	0.383	0.347		
Peak Load	P, lbs	149.7	136.0	91.3	80.3	86.1	78.0		
Uncorr. Pt. Load Strength Index,I _s	, MPa	0.195	0.174	0.121	0.156	0.186	0.175		
Uncorr. Pt. Load Strength Index,	_s , psi	28.2	25.2	17.5	22.6	26.9	25.3		
Size Correction Fac			1.08	1.07	0.98	0.96	0.95		
Corr. Pt. Load Strength Index,I _{s(50)}			0.19	0.13	0.15	0.18	0.17		
Corr. Pt. Load Strength Index,I _{s(5}	₀₎ , psi		27	19	22	26	24		
		MOIST	URE CONTEN	T DATA					
Moisture Condition of Spe	cimen	As Received	As Received	As Received	As Received	As Received	As Received		
Р	an No.								
Pan	wt. (g)	20.55	20.55	20.55	20.55	20.55	20.55		
Total wet	wt. (g)	284.66	284.66	284.66	284.66	284.66	284.66		
Total dry	wt (g)	242.1	242.1	242.1	242.1	242.1	242.1		
Moisture Cont	ent, %	19.2	19.2	19.2	19.2	19.2	19.2		
Com	ments:								

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1 Axial - L/D ratio 1/3 to 1

CTL Job No:	922 009		Duningt No.	5128		
Client:			Project No.: Date:	9/27/2016		•
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		•
Boring:	B-40	B-40	B-40	B-40	B-40	B-40
Sample:	R-5	R-5	R-5	R-5	R-5	R-5
Depth, ft:	21	21 Very Dark	21	21	21	21
Visual Description:	Very Dark Greenish Gray Rock	Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAN	PLE DIMENSI	ONS			
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	31			
Diameter Parallel to Loading, D, mm	60	60	60			
Diameter at Failure, D', mm	56	57	58	28	27	25
<u> </u>	8	TRENGTH DA	IA			
Peak Load, P, kN	0.513	0.472	0.512	0.23	0.356	0.249
Peak Load, P, lbs	115.3	106.1	115.1	51.7	80.0	56.0
Uncorr. Pt. Load Strength Index,I _s , MPa	0.153	0.138	0.147	0.108	0.173	0.130
Uncorr. Pt. Load Strength Index,I _s , psi	22.1	20.0	21.3	15.6	25.0	18.9
Size Correction Factor, F	1.07	1.07	1.08	0.97	0.96	0.94
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.16	0.15	0.16	0.10	0.17	0.12
Corr. Pt. Load Strength Index,I _{s(50)} , psi		21	23	15	24	18
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.	As Neceived	As Neceived	As Neceived	As Neceived	As Neceived	As Neceived
Pan wt. (g)	20.62	20.62	20.62	20.62	20.62	20.62
Total wet wt. (g)	168.96	168.96	168.96	168.96	168.96	168.96
Total dry wt (g)	144.8	144.8	144.8	144.8	144.8	144.8
Moisture Content, %	19.5	19.5	19.5	19.5	19.5	19.5
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTI Joh No.	000 000		5	E400					
CTL Job No: Client:			Project No.: Date:	5128 9/28/2016		•			
		nel Modification Project	By:	PJ		•			
Boring:	B-40	B-40	B-40	B-40	B-40	B-40			
Sample:	R-5	R-5	R-5	R-5	R-5	R-5			
Depth, ft:	23	23	23	23	23	23			
Visual Description:	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock			
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial			
Test Type ID	11	1	1	2	2	2			
	FOR A	NISOTROPIC	ROCK:						
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A			
SAMPLE DIMENSIONS									
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	30	30	30						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm	58	57	56	31	29	20			
	S	TRENGTH DA	ΓΑ						
Peak Load, P, kN	0.525	0.63	0.709	0.603	0.311	0.231			
Peak Load, P, lbs	118.0	141.6	159.4	135.6	69.9	51.9			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.151	0.184	0.211	0.255	0.140	0.151			
Uncorr. Pt. Load Strength Index,I _s , psi	21.9	26.7	30.6	36.9	20.4	21.9			
Size Correction Factor, F	1.08	1.07	1.07	0.99	0.97	0.90			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa		0.20	0.23	0.25	0.14	0.14			
Corr. Pt. Load Strength Index,I _{s(50)} , psi		29	33	36	20	20			
	MOIST	URE CONTEN	T DATA						
Moisture Condition of Specimen	As Received								
Pan No.	As Neceived								
Pan wt. (g)	21.63	21.63	21.63	21.63	21.63	21.63			
Total wet wt. (g)	130.56	130.56	130.56	130.56	130.56	130.56			
Total dry wt (g)	112.3	112.3	112.3	112.3	112.3	112.3			
Moisture Content, %	20.1	20.1	20.1	20.1	20.1	20.1			
Comments:									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No:	022 000		Duning Ma	5128					
CIL JOB NO:			Project No.: Date:	9/27/2016		•			
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		•			
Boring:	B-40	B-40	B-40	B-40	B-40	B-40			
Sample:	R-7	R-7	R-7	R-7	R-7	R-7			
Depth, ft:	26	26	26	26	26	26			
Visual Description:	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock	Very Dark Greenish Gray Rock			
Tota	Diama dual	Diamatal	Diamental.	Avital	Acial	Asial			
Test Type Test Type ID		Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2			
Test Type ID		NISOTROPIC	ROCK:			2			
	1 0111								
Bedding Angle Relative to Axis	None	None	None	None	None	None			
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A			
SAMPLE DIMENSIONS									
Width Perpendicular to loading, W, mm	60	60	60	60	60	60			
Length Perpendicular to Loading, L, mm	32	31	30						
Diameter Parallel to Loading, D, mm	60	60	60						
Diameter at Failure, D', mm	57	58	57	33	30	20			
	5	TRENGTH DA	IA		I				
Peak Load, P, kN	0.485	0.454	0.628	0.279	0.381	0.167			
Peak Load, P, lbs	109.0	102.1	141.2	62.7	85.7	37.5			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.142	0.130	0.184	0.111	0.166	0.109			
Uncorr. Pt. Load Strength Index,I _s , psi	20.6	18.9	26.6	16.1	24.1	15.9			
Size Correction Factor, F	1.07	1.08	1.07	1.00	0.98	0.90			
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.15	0.14	0.20	0.11	0.16	0.10			
Corr. Pt. Load Strength Index,I _{s(50)} , psi		20	29	16	24	14			
	MOIST	URE CONTEN	T DATA	T	,	T			
Moisture Condition of Specimen	As Received								
Pan No.	7.6 1.656.1764	7.6 1.6561764	710 110001100	7.6 1.656.1764	710 110001100	7.6 1.656.1764			
Pan wt. (g)	22.17	22.17	22.17	22.17	22.17	22.17			
Total wet wt. (g)		195.21	195.21	195.21	195.21	195.21			
Total dry wt (g)		167	167	167	167	167			
Moisture Content, %		19.5	19.5	19.5	19.5	19.5			
moisture dointeint, 70	10.0								
Comments:									
Comments.									

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No:	823-008		Project No.:	5128		
Client:	GRI		Date:	9/28/2016		
	Port of Coos Bay Chan		By:		D 40	D 46
Boring: Sample:	B-40 R-7	B-40 R-7	B-40 R-7	B-40 R-7	B-40 R-7	B-40 R-7
Depth, ft:	28	28	28	28	28	28
Visual Description:	Very Dark					
	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock	Greenish Gray Rock
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
Test Type ID	1	1	1	2	2	2
	FOR A	NISOTROPIC	ROCK:		T	
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
	SAN	PLE DIMENSI	ONS			
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	31	32	30			
Diameter Parallel to Loading, D, mm	60	60	60			
Diameter at Failure, D', mm		57	57	27	41	41
	S ⁻	TRENGTH DA	ΓΑ		T	
Peak Load, P, kN	0.626	0.794	0.458	0.065	0.696	0.481
Peak Load, P, lbs	140.7	178.5	103.0	14.6	156.5	108.1
Uncorr. Pt. Load Strength Index,I _s , MPa	0.180	0.232	0.134	0.032	0.222	0.154
Uncorr. Pt. Load Strength Index,I _s , psi	26.1	33.7	19.4	4.6	32.2	22.3
Size Correction Factor, F	1.08	1.07	1.07	0.96	1.05	1.05
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.19	0.25	0.14	0.03	0.23	0.16
Corr. Pt. Load Strength Index,I _{s(50)} , psi		36	21	4	34	23
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.33	22.33	22.33	22.33	22.33	22.33
Total wet wt. (g)	154.51	154.51	154.51	154.51	154.51	154.51
Total dry wt (g)	133.4	133.4	133.4	133.4	133.4	133.4
Moisture Content, %	19.0	19.0	19.0	19.0	19.0	19.0
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

Axial - L/D ratio 1/3 to 1

CTL Job No:			Project No.:	5128 T.021		
Client:		nel Modification Project	Date: By:	2/8/2017 PJ		
Boring:	UB-1	UB-1	ву : UB-1	PJ	1	
Sample:	R-1	R-1	R-1			
Depth, ft:	46	46	46			
Visual Description:	Olive Brown	Olive Brown	Olive Brown			
	Rock	Rock	Rock			
Test Type Test Type ID	Axial 2	Axial 2	Axial 2			
Test Type ID		NISOTROPIC				
	TOKA	inioo intoi io	itooit.			
Bedding Angle Relative to Axis	None	None	None			
Landing Orientation Dal to Dadding	N1/A	N1/A	N1/A			
Loading Orientation Rel. to Bedding	N/A	N/A IPLE DIMENSI	N/A			
	SAIV	IF LE DIMENS	ONS			
Width Perpendicular to loading, W, mm	59	58	59			
Length Perpendicular to Loading, L, mm						
Diameter Parallel to Loading, D, mm	50.3	48	25			
Diameter at Failure, D', mm	42	37	24			
	3	TRENGTH DA	IA		1	
Peak Load, P, kN	0.136	0.51	0.167			
Peak Load, P, lbs	30.6	114.7	37.5			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.043	0.187	0.093			
		0=4	40.4			
Uncorr. Pt. Load Strength Index,I _s , psi	6.3	27.1	13.4			
Size Correction Factor, F	1.05	1.02	0.93			
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.05	0.19	0.09			
Corr. Pt. Load Strength Index,I _{s(50)} , psi	7	28	12			
3 (66)	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received			
Pan No.						
Pan wt. (g)	115.45	115.45	115.45			
Total wet wt. (g)	390.07	390.07	390.07			
Total wet Wt. (g)	330.07	330.07	330.01			
Total dry wt (g)	344.57	344.57	344.57			
Moisture Content, %	19.9	19.9	19.9			
moisture content, %	13.3	13.3	13.3			
Comments:						
Comments:						
		l				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

CTI Joh No.	922 010		Desired N	5120 T 021		
CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		
	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ		
Boring:	UB-1	UB-1	UB-1	UB-1	UB-1	
Sample: Depth, ft:	R-1 48	R-1 48	R-1 48	R-1 48	R-1 48	
Visual Description:		Olive Gray Rock	Olive Gray Rock		Olive Gray Rock	
	,		,,,	,,		
Test Type	Axial	Axial	Axial	Diametral	Axial	
Test Type ID	2	2	2	1	2	
	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None	None	None	None	
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	
	SAN	IPLE DIMENS	UNS		1	
Width Perpendicular to loading, W, mm	35	52	56	58	58	
Length Perpendicular to Loading, L, mm				30		
Diameter Parallel to Loading, D, mm	54	56	31	58	30	
Diameter at Failure, D', mm	39	52	28	57	21	
	S	TRENGTH DA	TA		T	
Peak Load, P, kN	0.107	0.316	0.197	0.146	0.153	
Peak Load, P, lbs	24.1	71.0	44.3	32.8	34.4	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.062	0.092	0.099	0.044	0.099	
Uncorr. Pt. Load Strength Index,I _s , psi	8.9	13.3	14.3	6.4	14.3	
Size Correction Factor, F	0.92	1.07	0.95	1.06	0.90	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.06	0.10	0.09	0.05	0.09	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	8	14	14	7	13	
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	
Pan No.						
Pan wt. (g)	22.93	22.93	22.93	22.93	22.93	
Total wet wt. (g)	241.14	241.14	241.14	241.14	241.14	
Total dry wt (g)	207.39	207.39	207.39	207.39	207.39	
Moisture Content, %	18.3	18.3	18.3	18.3	18.3	
Comments:						
	1. Diametral 2. /					

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

CTL Job No:	823-010		Project No.:	5128 T.021		
Client:	GRI		Date:	2/8/2017		
Project Name: Boring:	Port of Coos Bay Chan UB-1	nel Modification Project UB-1	By: UB-1	PJ UB-1	UB-1	
Sample:	R-3	R-3	R-3	R-3	R-3	
Depth, ft:	57	57	57	57	57	
Visual Description:	Olive Gray Rock	Olive Gray Rock	Olive Gray Rock	Olive Gray Rock	Olive Gray Rock	
Test Type	Axial	Diametral	Diametral	Axial	Axial	
Test Type ID	FOR A	NISOTROPIC	ROCK:	2	2	
Bedding Angle Relative to Axis	None	None	None	None	None	
Loading Orientation Rel. to Bedding		N/A IPLE DIMENSI	N/A ONS	N/A	N/A	
Width Perpendicular to loading, W, mm	58	59	59	59	59	
Length Perpendicular to Loading, L, mm		30	30			
Diameter Parallel to Loading, D, mm	37	59	59	36	32	
Diameter at Failure, D', mm	30	58	55	35	30	
	S	TRENGTH DA				
Peak Load, P, kN	0.384	0.263	0.748	0.219	0.412	
Peak Load, P, lbs	86.3	59.1	168.2	49.2	92.6	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.173	0.077	0.231	0.083	0.183	
Uncorr. Pt. Load Strength Index,I _s , psi	25.1	11.1	33.4	12.1	26.5	
Size Correction Factor, F	0.97	1.07	1.06	1.01	0.98	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.17	0.08	0.24	0.08	0.18	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	24	12	35	12	26	
	MOIST	URE CONTEN	TDATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	
Pan No.						
Pan wt. (g)	22.63	22.63	22.63	22.63	22.63	
Total wet wt. (g)	218.46	218.46	218.46	218.46	218.46	
Total dry wt (g)	188.61	188.61	188.61	188.61	188.61	
Moisture Content, %	18.0	18.0	18.0	18.0	18.0	
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

2=1:::::	200 010			F400 = 00.		
CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		=
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		<u>-</u>
Boring:	UB-1	UB-1	UB-1	UB-1	UB-1	UB-1
Sample:	R-4	R-4	R-4	R-4	R-4	R-4
Depth, ft: Visual Description:	60 Gray Rock	60 Gray Rock	60 Gray Rock	60 Gray Rock	60 Gray Rock	60 Gray Rock
Visual Description.	Gray Nock	Gray Rock	Gray Rock	Olay Nock	Gray Rock	Gray Nock
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
Test Type ID	1 FOR A	NISOTROPIC	1	2	2	2
	FUR A	NISUTRUPIC	RUCK:			
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding		N/A	N/A	N/A	N/A	N/A
	SAN	IPLE DIMENSI	UNS			
Width Perpendicular to loading, W, mm	58	58	58	58	58	58
Length Perpendicular to Loading, L, mm	30	30	30			
Diameter Parallel to Loading, D, mm	58	58	58	38	25	23
Diameter at Failure, D', mm	55	54	56	34	26	23
	S ⁻	TRENGTH DA	ГА		Т	Т
Peak Load, P, kN	0.674	0.596	0.552	0.429	0.456	0.332
Peak Load, P, lbs	151.5	134.0	124.1	96.4	102.5	74.6
Uncorr. Pt. Load Strength Index,I _s , MPa	0.211	0.190	0.170	0.171	0.237	0.195
Uncorr. Pt. Load Strength Index,I _s , psi	30.6	27.6	24.6	24.8	34.4	28.4
Size Correction Factor, F	1.06	1.05	1.06	1.00	0.94	0.92
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.22	0.20	0.18	0.17	0.22	0.18
Corr. Pt. Load Strength Index,I _{S(50)} , psi	32	29	26	25	32	26
	MOIST	URE CONTEN	T DATA		Γ	Γ
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.03	22.03	22.03	22.03	22.03	22.03
Total wet wt. (g)	178.3	178.3	178.3	178.3	178.3	178.3
Total dry wt (g)	155.84	155.84	155.84	155.84	155.84	155.84
Moisture Content, %	16.8	16.8	16.8	16.8	16.8	16.8
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1
Axial - L/D ratio 1/3 to 1
Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

CTL Job No:			Project No.:			
Client:		nel Modification Project	Date: By:	2/8/2017 PJ		
Boring:	UB-1	UB-1	UB-1	UB-1	UB-1	UB-1
Sample:	R-5	R-5	R-5	R-5	R-5	R-5
Depth, ft:	67	67	67	67	67	67
Visual Description:	Olive Brown Rock	Olive Brown Rock	Olive Brown Rock	Olive Brown Rock	Olive Brown Rock	Olive Brown Rock
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2
Test Type ID	FOR A	NISOTROPIC	ROCK:			
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAN	IPLE DIMENS	ONS			
Width Perpendicular to loading, W, mm	58	58	58	58	58	58
Length Perpendicular to Loading, L, mm	30	31	31			
Diameter Parallel to Loading, D, mm	58	58	58	35	27	33
Diameter at Failure, D', mm	57	56	57	35	32	29
	S	RENGTH DA	ГА		T	Ī
Peak Load, P, kN	0.917	0.814	0.686	0.543	0.667	0.515
Peak Load, P, lbs	206.1	183.0	154.2	122.1	149.9	115.8
Uncorr. Pt. Load Strength Index,I _s , MPa	0.277	0.251	0.208	0.210	0.282	0.240
Uncorr. Pt. Load Strength Index,I _s , psi	40.2	36.3	30.1	30.5	40.9	34.9
Size Correction Factor, F	1.06	1.06	1.06	1.01	0.99	0.97
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.30	0.27	0.22	0.21	0.28	0.23
Corr. Pt. Load Strength Index,I _{s(50)} , psi	43	39	32	31	40	34
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.18	22.18	22.18	22.18	22.18	22.18
Total wet wt. (g)	222.05	222.05	222.05	222.05	222.05	222.05
Total dry wt (g)	192.62	192.62	192.62	192.62	192.62	192.62
Moisture Content, %	17.3	17.3	17.3	17.3	17.3	17.3
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1

CTI Joh I	lo: 823-010		Project No.:	5128 T.021		
Clie	nt: GRI		Date:	2/8/2017		- -
	Port of Coos Bay Char				1	1
Borii Samp		UB-1 R-6	UB-1 R-6	UB-1 R-6	UB-1 R-6	UB-1 R-6
Depth		71	71	71	71	71
Visual Descripti	Olive Gray Rock	Olive Gray Rock	Olive Gray Rock	Olive Gray Rock	Olive Gray Rock	Olive Gray Rock
Test Type		Diametral	Diametral	Axial 2	Axial 2	Axial 2
Test Type		NISOTROPIC	ROCK:	2	2	2
Bedding Angle Relative to A		None	None	None	None	None
Loading Orientation Rel. to Bedd		N/A	N/A	N/A	N/A	N/A
	SAN	IPLE DIMENS	IONS	Τ	1	ı
Width Perpendicular to loading, W, n	m 59	59	59	59	59	59
Length Perpendicular to Loading, L, r	nm 31	30	31			
Diameter Parallel to Loading, D, r	nm 59	59	59	27	27	30
Diameter at Failure, D', r		54 TRENGTH DA	52 TA	19	26	30
	<u></u>	IKLIGITIDA				
Peak Load, P,	kN 0.745	1.003	0.917	0.338	0.497	0.744
Peak Load, P,		225.5	206.1	76.0	111.7	167.3
Uncorr. Pt. Load Strength Index,I _s , M	Pa 0.225	0.315	0.299	0.237	0.254	0.330
Uncorr. Pt. Load Strength Index,I _s ,	osi 32.7	45.7	43.4	34.3	36.9	47.9
Size Correction Factor	, F 1.06	1.06	1.05	0.88	0.95	0.98
Corr. Pt. Load Strength Index,I _{S(50)} , N	ра 0.24	0.33	0.31	0.21	0.24	0.32
Corr. Pt. Load Strength Index, I _{s(50)} ,	osi 35	48	45	30	35	47
	MOIST	URE CONTEN	T DATA	r	1	1
Moisture Condition of Specin	en As Received	As Received	As Received	As Received	As Received	As Received
Pan	No.					
Pan wt.	(g) 22.38	22.38	22.38	22.38	22.38	22.38
Total wet wt.	(g) 184.45	184.45	184.45	184.45	184.45	184.45
Total dry wt	(g) 160.19	160.19	160.19	160.19	160.19	160.19
Moisture Content	% 17.6	17.6	17.6	17.6	17.6	17.6
Comme	its:					

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

CTI Joh No.	922 010		Desired N	5120 T 021		
CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		
	Port of Coos Bay Chan	nel Modification Project	Ву:	PJ		
Boring:	UB-1	UB-1	UB-1	UB-1	UB-1	
Sample: Depth, ft:	R-7 77	R-7 77	R-7 77	R-7 77	R-7 77	
Visual Description:			Olive Gray Rock		Olive Gray Rock	
	,	,	,	,	,	
T 1.T	B:	D:				
Test Type Test Type ID	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2	
		NISOTROPIC	_		2	
Bedding Angle Relative to Axis	None	None	None	None	None	
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	
		PLE DIMENS	ONS			
Width Perpendicular to loading, W, mm	58	58	58	58	58	
which respendicular to loading, W, mm	J0	30	Jo	Jo	30	
Length Perpendicular to Loading, L, mm	30	38				
Diameter Parallel to Loading, D, mm	58	58	47	35	31	
_						
Diameter at Failure, D', mm	55	56	45	35	30	
	<u> </u>	TRENGTH DA	IA			
Peak Load, P, kN	0.496	0.52	0.371	0.419	0.429	
Dook Load D. Ibo	111 E	116.0	92.4	94.2	96.4	
Peak Load, P, lbs	111.5	116.9	83.4			
Uncorr. Pt. Load Strength Index,I _s , MPa	0.155	0.160	0.112	0.162	0.194	
Uncorr. Pt. Load Strength Index,I _s , psi	22.6	23.2	16.2	23.5	28.1	
Size Correction Factor, F	1.06	1.06	1.07	1.01	0.97	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.16	0.17	0.12	0.16	0.19	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	24	25	17	24	27	
3 × × × × × × × × × × × × × × × × × × ×		URE CONTEN			<u>I</u>	
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	
Pan No.						
Pan wt. (g)	22.19	22.19	22.19	22.19	22.19	
Total wet wt. (g)	205.46	205.46	205.46	205.46	205.46	
Total dry wt (g)	178.32	178.32	178.32	178.32	178.32	
Moisture Content, %	17.4	17.4	17.4	17.4	17.4	
Comments:						
	1 5: 1 1 0 /	vial 3- Block 4-				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

271.11.11	000 010			5400 T 004		
CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		
		nel Modification Project	By:	PJ		
Boring:	UB-2	UB-2	UB-2	UB-2	UB-2	
Sample: Depth, ft:	R-2 46	R-2 46	R-2 46	R-2 46	R-2 46	
Visual Description:	Dark Olive	Dark Olive	Dark Olive	Dark Olive	Dark Olive	
·	Brown Rock	Brown Rock	Brown Rock	Brown Rock	Brown Rock	
T	5:		5:		D: / I	
Test Type Test Type ID	Diametral 1	Axial 2	Diametral 1	Axial 2	Diametral 1	
тезі турс із		NISOTROPIC			<u>'</u>	
Bedding Angle Relative to Axis	None	None	None	None	None	
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	
	SAN	IPLE DIMENS	ONS			•
Width Perpendicular to loading, W, mm	57	57	58	58	59	
	J1	31			0.9	
Length Perpendicular to Loading, L, mm	30		32		30	
Diameter Parallel to Loading, D, mm	57	40	58	38	59	
_						
Diameter at Failure, D', mm	54	39 TRENGTH DA	56 TA	35	57	
	ა	IRENGINDA	I A			
Peak Load, P, kN	0.261	0.241	0.342	0.275	0.358	
Peak Load, P, lbs	58.7	54.2	76.9	61.8	80.5	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.085	0.085	0.105	0.106	0.106	
Uncorr. Pt. Load Strength Index,I _s , psi	12.3	12.3	15.3	15.4	15.4	
Size Correction Factor, F	1.05	1.03	1.06	1.01	1.07	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.09	0.09	0.11	0.11	0.11	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	13	13	16	16	17	
Con. Ft. Load Strength index, i _S (50), psi		URE CONTEN		10	17	
	WOIST	OKE CONTEN	I DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	
Pan No.						
Pan wt. (g)	22.35	22.35	22.35	22.35	22.35	
Total wet wt. (g)	250.52	250.52	250.52	250.52	250.52	
Total dry wt (g)	218.15	218.15	218.15	218.15	218.15	
Moisture Content, %	16.5	16.5	16.5	16.5	16.5	
Comments:						
	1- Diametral 2- /	<u> </u>	<u> </u>			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

271	000 040			5400 T 004		
CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		·
Boring:	UB-2	UB-2	UB-2	UB-2	UB-2	UB-2
Sample:	R-3	R-3	R-3	R-3	R-3	R-3
Depth, ft: Visual Description:	50 Gray Rock	50 Gray Rock	50 Gray Rock	50 Gray Rock	50 Gray Rock	50 Gray Rock
visual 25001 piloti.	Gray Nook	Gray Nook	Gray Nook	Gray Nook	Gray Neok	Sidy Nook
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2
rest Type ID		NISOTROPIC		2	2	2
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A SAN	N/A IPLE DIMENSI	N/A ONS	N/A	N/A	N/A
Width Perpendicular to loading, W, mm	58	58	58	58	58	58
Length Perpendicular to Loading, L, mm	31	35	32			
Diameter Parallel to Loading, D, mm	58	58	58	36	28	27
Diameter at Failure, D', mm	56	57	55	35	26	25
	S ⁻	TRENGTH DA	ГА			
Peak Load, P, kN	0.399	0.375	0.312	0.241	0.122	0.144
Peak Load, P, lbs	89.7	84.3	70.1	54.2	27.4	32.4
Uncorr. Pt. Load Strength Index,I _s , MPa	0.123	0.113	0.098	0.093	0.064	0.078
Uncorr. Pt. Load Strength Index,I _s , psi	17.8	16.5	14.2	13.5	9.2	11.3
Size Correction Factor, F	1.06	1.06	1.06	1.01	0.94	0.93
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.13	0.12	0.10	0.09	0.06	0.07
Corr. Pt. Load Strength Index,I _{s(50)} , psi	19	18	15	14	9	11
	MOIST	URE CONTEN	IDAIA			-
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.34	22.34	22.34	22.34	22.34	22.34
Total wet wt. (g)	177.91	177.91	177.91	177.91	177.91	177.91
Total dry wt (g)	156.16	156.16	156.16	156.16	156.16	156.16
Moisture Content, %	16.3	16.3	16.3	16.3	16.3	16.3
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1
Axial - L/D ratio 1/3 to 1
Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

OTI I-b N-	022 040		5 1 (**	5400 T 004		
CTL Job No: Client:			Project No.: Date:			
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		•
Boring:	UB-2	UB-2	UB-2	UB-2	UB-2	UB-2
Sample:	R-4	R-4	R-4	R-4	R-4	R-4
Depth, ft: Visual Description:	56 Gray Rock	56 Gray Rock	56 Gray Rock	56 Gray Rock	56 Gray Rock	56 Gray Rock
	2,	,	,	,	,	
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2
rest Type ID		NISOTROPIC		2	2	2
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A SAN	N/A IPLE DIMENSI	N/A ONS	N/A	N/A	N/A
Width Perpendicular to loading, W, mm	59	59	59	59	59	59
Length Perpendicular to Loading, L, mm	31	32	30			
Diameter Parallel to Loading, D, mm	59	59	59	35	38	34
Diameter at Failure, D', mm	55	57	56	23	34	24
, ,		TRENGTH DA				
Peak Load, P, kN	0.231	0.176	0.111	0.043	0.141	0.142
Peak Load, P, lbs	51.9	39.6	25.0	9.7	31.7	31.9
Uncorr. Pt. Load Strength Index,I _s , MPa	0.071	0.052	0.034	0.025	0.055	0.079
Uncorr. Pt. Load Strength Index,I _s , psi	10.3	7.6	4.9	3.6	8.0	11.4
Size Correction Factor, F	1.06	1.07	1.06	0.92	1.00	0.93
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.08	0.06	0.04	0.02	0.06	0.07
Corr. Pt. Load Strength Index,I _{s(50)} , psi	11	8	5	3	8	11
	MOIST	URE CONTEN	T DATA		T	
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	20.71	20.71	20.71	20.71	20.71	20.71
Total wet wt. (g)	182.38	182.38	182.38	182.38	182.38	182.38
Total dry wt (g)	156.25	156.25	156.25	156.25	156.25	156.25
Moisture Content, %	19.3	19.3	19.3	19.3	19.3	19.3
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1
Axial - L/D ratio 1/3 to 1
Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

CTL Job No:			Project No.:	5128 T.021		_
Client: Project Name:		nel Modification Project	Date: By:	2/8/2017 PJ		_
Boring:	UB-2	UB-2	UB-2	UB-2	UB-2	UB-2
Sample:	R-5	R-5	R-5	R-5	R-5	R-5
Depth, ft:	63	63	63	63	63	63
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type	Diametral 1	Diametral	Diametral	Diametral 1	Axial 2	Axial
Test Type ID		NISOTROPIC	ROCK:	1		2
	1017	111001110110	Itoort.			
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
		IPLE DIMENS		·		
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	30	32	31		
Diameter Parallel to Loading, D, mm	60	60	60	60	36	34
Diameter at Failure, D', mm	57	55	56	56	35	30
	S ⁻	TRENGTH DA	ΤΑ			
Peak Load, P, kN	0.136	0.156	0.157	0.25	0.141	0.188
Peak Load, P, lbs	30.6	35.1	35.3	56.2	31.7	42.3
Uncorr. Pt. Load Strength Index,I _s , MPa	0.040	0.047	0.047	0.074	0.053	0.082
Uncorr. Pt. Load Strength Index,I _s , psi	5.8	6.9	6.8	10.8	7.6	11.9
Size Correction Factor, F	1.07	1.06	1.07	1.07	1.02	0.98
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.04	0.05	0.05	0.08	0.05	0.08
Corr. Pt. Load Strength Index,I _{s(50)} , psi	6	7	7	12	8	12
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.28	22.28	22.28	22.28	22.28	22.28
Total wet wt. (g)	218.44	218.44	218.44	218.44	218.44	218.44
Total dry wt (g)	190.18	190.18	190.18	190.18	190.18	190.18
Moisture Content, %	16.8	16.8	16.8	16.8	16.8	16.8
Comments:						Invalid Test. Did not fail through both loading points.
Took to make	1- Diametral 2- A	and a District				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1

CTI Joh Mo.	922 010		Design A P	5128 T.021		
CTL Job No: Client:			Project No.: Date:	Date: 2/8/2017		
		nel Modification Project	Ву:		•	
Boring:	UB-2	UB-2	UB-2	UB-2	UB-2	
Sample: Depth, ft:	R-6 65	R-6 65	R-6 65	R-6 65	R-6 65	
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	
Test Type	Diametral	Diametral	Axial	Axial	Axial	
Test Type ID	FOR A	NISOTROPIC	ROCK:	2	2	
			itoort.			
Bedding Angle Relative to Axis	None	None	None	None	None	
Loading Orientation Rel. to Bedding	N/A SAN	N/A IPLE DIMENSI	N/A ONS	N/A	N/A	
Middle Barrandi I I I I I I I I I I I I I I I I I I I				50	50	
Width Perpendicular to loading, W, mm	59	59	59	59	59	
Length Perpendicular to Loading, L, mm	34	30				
Diameter Parallel to Loading, D, mm	59	59	35	34	25	
Diameter at Failure, D', mm	55	54 TRENGTH DA	46	36	25	
	3	I KENGTH DA				
Peak Load, P, kN	0.331	0.247	0.335	0.142	0.97	
Peak Load, P, lbs	74.4	55.5	75.3	31.9	218.1	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.102	0.078	0.097	0.053	0.516	
Uncorr. Pt. Load Strength Index,I _s , psi	14.8	11.2	14.1	7.6	74.9	
Size Correction Factor, F	1.06	1.06	1.08	1.02	0.94	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.11	0.08	0.10	0.05	0.48	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	16	12	15	8	70	
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	
Pan No.						
Pan wt. (g)	20.28	20.28	20.28	20.28	20.28	
Total wet wt. (g)	193.73	193.73	193.73	193.73	193.73	
Total dry wt (g)	168.35	168.35	168.35	168.35	168.35	
Moisture Content, %	17.1	17.1	17.1	17.1	17.1	
Comments:				Invalid Test. Did not fail through both loading points.		
T 11	4.5: 4.40.4	vial 3- Block 4- I	L	L .		

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1

CTL Job No:	823_010		Drainet No.	5128 T.021		
Client:	GRI		Project No.: Date:	2/8/2017		
		nel Modification Project	By:	PJ	1	
Boring: Sample:	UB-2 R-7	UB-2 R-7	UB-2 R-7	UB-2 R-7	UB-2 R-7	
Depth, ft:	72	72	72	72	72	
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Diametral 1	Diametral	
Took Type ID		NISOTROPIC		<u> </u>	· · ·	
Bedding Angle Relative to Axis	None	None	None	None	None	
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	
	SAN	IPLE DIMENS	IONS		1	
Width Perpendicular to loading, W, mm	58	58	58	58	58	
Length Perpendicular to Loading, L, mm	30	30	30	30	30	
Diameter Parallel to Loading, D, mm	58	58	58	58	58	
Diameter at Failure, D', mm	56	57	56	57	56	
	S	TRENGTH DA	TA		1	
Peak Load, P, kN	0.672	0.612	0.725	0.691	0.563	
Peak Load, P, lbs	151.1	137.6	163.0	155.3	126.6	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.207	0.185	0.223	0.209	0.173	
Uncorr. Pt. Load Strength Index,I _s , psi	30.0	26.8	32.4	30.3	25.1	
Size Correction Factor, F	1.06	1.06	1.06	1.06	1.06	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.22	0.20	0.24	0.22	0.18	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	32	29	34	32	27	
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	
Pan No.						
Pan wt. (g)	22.1	22.1	22.1	22.1	22.1	
Total wet wt. (g)	185.7	185.7	185.7	185.7	185.7	
Total dry wt (g)	163.77	163.77	163.77	163.77	163.77	
Moisture Content, %	15.5	15.5	15.5	15.5	15.5	
Comments:						
T44	4 D: 4 1 0 4	l Vial 3- Block 4- I	 	<u> </u>	1	

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1

CTI Joh Nov	000 040		5 :	5420 T 024		
CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		
	Port of Coos Bay Chan	nel Modification Project	By:			
Boring:	UB-3	UB-3	UB-3	UB-3	UB-3	
Sample: Depth, ft:	R-1 30.3	R-1 30.3	R-1 30.3	R-1 30.3	R-1 30.3	
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	
			·		-	
Test Tyre	Diametral	Diametral	Axial	Axial	Axial	
Test Type Test Type ID	1	1	2	2	2	
	FOR A	NISOTROPIC	ROCK:		•	
Bedding Angle Relative to Axis	None	None	None	None	None	
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	
	SAN	IPLE DIMENS	ONS			
Width Perpendicular to loading, W, mm	58	58	58	58	58	
Length Perpendicular to Loading, L, mm	30	30				
Diameter Parallel to Loading, D, mm	58	58	40	36	31	
Diameter at Failure, D', mm	56	56	41	37	30	
	S	TRENGTH DA	IA		1	
Peak Load, P, kN	0.372	0.319	0.187	0.126	0.114	
Peak Load, P, lbs	83.6	71.7	42.0	28.3	25.6	
Uncorr. Pt. Load Strength Index,I _s , MPa	0.115	0.098	0.062	0.046	0.051	
Uncorr. Pt. Load Strength Index,I _s , psi	16.6	14.2	9.0	6.7	7.5	
Size Correction Factor, F	1.06	1.06	1.04	1.02	0.97	
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.12	0.10	0.06	0.05	0.05	
Corr. Pt. Load Strength Index,I _{s(50)} , psi	18	15	9	7	7	
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	
Pan No.						
Pan wt. (g)	20.38	20.38	20.38	20.38	20.38	
Total wet wt. (g)	204.6	204.6	204.6	204.6	204.6	
Total dry wt (g)	176.28	176.28	176.28	176.28	176.28	
Moisture Content, %	18.2	18.2	18.2	18.2	18.2	
Comments:						
T 4.4	4 Diamateral O. /	Vial 3- Block 1- I				

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

	CTL Job No:			Project No.:			
	Client:			Date:	2/8/2017		
	Project Name: R	Port of Coos Bay Chan UB-3	nel Modification Project UB-3	By: UB-3	PJ UB-3	UB-3	
	Sample:	R-2	R-2	R-2	R-2	R-2	
	Depth, ft:	35	35	35	35	35	
	Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	
	Test Type	Diametral	Axial	Axial	Axial	Axial	
	Test Type ID	1	2	2	2	2	
	1	FUR A	NISOTROPIC	ROCK:			
Bedding A	ingle Relative to Axis	None	None	None	None	None	
Loading Orienta	ation Rel. to Bedding	N/A	N/A IPLE DIMENSI	N/A	N/A	N/A	
		- CAII					
Width Perpendicular	r to loading, W, mm	55	55	55	55	55	
Length Perpendicul	ar to Loading, L, mm	32					
Diameter Paralle	el to Loading, D, mm	55	37	34	36	26	
Diamete	er at Failure, D', mm	50	40	36	38	24	
		S ⁻	TRENGTH DA	ΓΑ			
	Peak Load, P, kN	0.254	0.254	0.238	0.241	0.059	
	Peak Load, P, lbs	57.1	57.1	53.5	54.2	13.3	
Uncorr. Pt. Load Stre	ngth Index,I _s , MPa	0.092	0.091	0.094	0.091	0.035	
Uncorr. Pt. Load Stre	ength Index,I _s , psi	13.4	13.2	13.7	13.1	5.1	
Size C	Correction Factor, F	1.02	1.03	1.00	1.01	0.91	
Corr. Pt. Load Streng	th Index,I _{s(50)} , Mpa	0.09	0.09	0.09	0.09	0.03	
Corr. Pt. Load Streng	th Index,I _{s(50)} , psi	14	13	14	13	5	
		MOIST	URE CONTEN	T DATA			
Moisture Co	ondition of Specimen	As Received	As Received	As Received	As Received	As Received	
	Pan No.	7.0 1.000.100	7.0 1.000.100	7.6 7.656.754	7.6 1.656.154	7.0.1.000.1.00	
	Pan wt. (g)	22.25	22.25	22.25	22.25	22.25	
	Total wet wt. (g)	162.5	162.5	162.5	162.5	162.5	
	Total dry wt (g)	141.78	141.78	141.78	141.78	141.78	
N	Moisture Content, %	17.3	17.3	17.3	17.3	17.3	
	Comments:						_

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump Diametral - L/D ratio>1

	CTL Job No:			Project No.:	5128 T.021		
	Client:		111 15 2 5 2	Date:	2/8/2017		
-	Boring:	Port of Coos Bay Chan UB-3	nel Modification Project UB-3	UB-3	PJ UB-3	UB-3	UB-3
	Sample:	R-3	R-3	R-3	R-3	R-3	R-3
	Depth, ft:	40	40	40	40	40	40
Vis	sual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1 FOR A	NISOTROPIC	BUCK.	2	2	2
		10117	NIGOTIKOT IG	Itoort.			
Bedding Ang	le Relative to Axis	None	None	None	None	None	None
Loading Orientation	on Rel. to Bedding	N/A SAM	N/A IPLE DIMENSI	N/A	N/A	N/A	N/A
Width Perpendicular to	loading, W, mm	56	56	56	56	56	56
Length Perpendicular t	to Loading, L, mm	30	30	30			
Diameter Parallel to	D Loading, D, mm	56	56	56	39	26	33
Diameter a	at Failure, D', mm	55	52 FRENGTH DA	52	42	27	29
		3	KENGIH DA	IA		1	
	Peak Load, P, kN	0.195	0.135	0.253	0.332	0.169	0.224
	Peak Load, P, lbs	43.8	30.3	56.9	74.6	38.0	50.4
Uncorr. Pt. Load Streng	th Index,I _s , MPa	0.063	0.046	0.087	0.111	0.088	0.108
Uncorr. Pt. Load Streng	gth Index,I _s , psi	9.2	6.7	12.6	16.1	12.7	15.7
Size Corr	rection Factor, F	1.05	1.03	1.03	1.04	0.94	0.96
Corr. Pt. Load Strength	Index,I _{s(50)} , Mpa	0.07	0.05	0.09	0.12	0.08	0.10
Corr. Pt. Load Strength	Index,I _{s(50)} , psi	10	7	13	17	12	15
		MOIST	JRE CONTEN	T DATA	ı	1	
Moisture Cond	dition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Module Cone	Pan No.	710 110001100	7.0 1.0001704	7.6 1.6661764	710 110001100	710 110001100	710 110001100
	Pan wt. (g)	19.44	19.44	19.44	19.44	19.44	19.44
	Total wet wt. (g)	183.67	183.67	183.67	183.67	183.67	183.67
	,						
A4 - 1	Total dry wt (g)	160.6	160.6	160.6	160.6	160.6	160.6
Moi	sture Content, %	16.3	16.3	16.3	16.3	16.3	16.3
	Comments:						
•					•	•	

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1

OTI 1-5 No.	922 040		D. 1. 12	E100 T 004		
CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		•
	Port of Coos Bay Chan	nel Modification Project	By:	PJ		•
Boring:	UB-3	UB-3	UB-3	UB-3	UB-3	UB-3
Sample:	R-5	R-5	R-5	R-5	R-5	R-5
Depth, ft: Visual Description:	51 Gray Rock	51 Gray Rock	51 Gray Rock	51 Gray Rock	51 Gray Rock	51 Gray Rock
	,					,
Test Type Test Type ID	Diametral 1	Diametral 1	Diametral 1	Axial 2	Axial 2	Axial 2
Test Type ID		NISOTROPIC		2	2	2
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A SAN	N/A IPLE DIMENSI	N/A ONS	N/A	N/A	N/A
Width Perpendicular to loading, W, mm	60	60	60	60	60	60
Length Perpendicular to Loading, L, mm	30	31	31			
Diameter Parallel to Loading, D, mm	60	60	60	34	35	31
Diameter at Failure, D', mm	56	55	58	28	29	26
		TRENGTH DA				
Peak Load, P, kN	0.103	0.513	0.153	0.142	0.236	0.285
Peak Load, P, lbs	23.2	115.3	34.4	31.9	53.1	64.1
Uncorr. Pt. Load Strength Index,I _s , MPa	0.031	0.155	0.044	0.066	0.107	0.143
Uncorr. Pt. Load Strength Index,I _s , psi	4.4	22.5	6.4	9.6	15.5	20.8
Size Correction Factor, F	1.07	1.06	1.08	0.97	0.97	0.95
Corr. Pt. Load Strength Index,I _{s(50)} , Mpa	0.03	0.17	0.05	0.06	0.10	0.14
Corr. Pt. Load Strength Index,I _{s(50)} , psi	5	24	7	9	15	20
	MOIST	URE CONTEN	T DATA		T	
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.						
Pan wt. (g)	22.37	22.37	22.37	22.37	22.37	22.37
Total wet wt. (g)	196.92	196.92	196.92	196.92	196.92	196.92
Total dry wt (g)	170.39	170.39	170.39	170.39	170.39	170.39
Moisture Content, %	17.9	17.9	17.9	17.9	17.9	17.9
Comments:						

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1
Axial - L/D ratio 1/3 to 1
Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

	OT 1	000 040			5400 T 004		
	CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		
			nel Modification Project	By:	PJ		·
	Boring:	UB-3	UB-3	UB-3	UB-3	UB-3	UB-3
	Sample:	R-6	R-6	R-6	R-6	R-6	R-6
Vieus	Depth, ft: Il Description:	55 Gray Rock	55 Gray Rock	55 Gray Rock	55 Gray Rock	55 Gray Rock	55 Gray Rock
	,	J. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	C.a, r.co.	S.a., r.co.	Gray resid	S.a, r.co.	Cisy (took
	Test Type	Diametral	Axial	Axial 2	Diametral 1	Diametral 1	Axial
	Test Type ID	FOR A	NISOTROPIC		<u> </u>	<u> </u>	2
		TOKA	MOOTHOTIO	ROOK.			
Bedding Angle F	Relative to Axis	None	None	None	None	None	None
Loading Orientation F	Rel. to Bedding	N/A SAM	N/A IPLE DIMENS	N/A IONS	N/A	N/A	N/A
Width Perpendicular to loa	ading, W, mm	58	58	58	56	56	56
Length Perpendicular to L	oading, L, mm	34			30	31	
Diameter Parallel to Lo	oading, D, mm	58	40	38	56	56	27
Diameter at F	ailure, D', mm	55	34	36	54	54	26
		S	RENGTH DA	TA			
Pe	ak Load, P, kN	0.413	0.232	0.266	0.366	0.341	0.141
Pe	ak Load, P, lbs	92.8	52.2	59.8	82.3	76.7	31.7
Uncorr. Pt. Load Strength	Index,I _s , MPa	0.129	0.092	0.100	0.121	0.113	0.076
Uncorr. Pt. Load Strength	Index,I _s , psi	18.8	13.4	14.5	17.6	16.4	11.0
Size Correc	tion Factor, F	1.06	1.00	1.01	1.04	1.04	0.93
Corr. Pt. Load Strength Ind	` /	0.14	0.09	0.10	0.13	0.12	0.07
Corr. Pt. Load Strength Inc	$ ext{dex}, extbf{I}_{ ext{S}(50)}, ext{psi}$	20	13	15	18	17	10
	ı	MOIST	JRE CONTEN	T DATA		ı	
Moisture Condition	on of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
	Pan No.						
	Pan wt. (g)	20.51	20.51	20.51	20.51	20.51	20.51
Т	otal wet wt. (g)	170.69	170.69	170.69	170.69	170.69	170.69
	Total dry wt (g)	152	152	152	152	152	152
Moistu	re Content, %	14.2	14.2	14.2	14.2	14.2	14.2
	Comments:			Invalid Test. Did not fail through both loading points.			

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1
Axial - L/D ratio 1/3 to 1
Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

	CTL Job No: 3			Project No.:	5128 T.021		
5	Client:			Date:	2/8/2017		
Pr	Oject Name: Boring:	Port of Coos Bay Chan UB-3	nel Modification Project UB-3	UB-3	PJ UB-3	UB-3	UB-3
	Sample:	R-7	R-7	R-7	R-7	R-7	R-7
	Depth, ft:	62	62	62	62	62	62
Visual	Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
	Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
	Test Type ID	1 FOR A	NISOTROPIC	BUCK.	2	2	2
	1	TOKA	NICOTICOTIO	ROOK.			
Bedding Angle Re	elative to Axis	None	None	None	None	None	None
Loading Orientation Re	el. to Bedding	N/A SAM	N/A IPLE DIMENSI	N/A	N/A	N/A	N/A
Width Perpendicular to load	ling. W mm	57	57	57	57	57	57
Length Perpendicular to Loa		30	30	30	Ű,	Ű,	<u> </u>
Diameter Parallel to Loa		57	57	57	44	33	30
Diameter at Fai	ilure, D', mm	55	55 FRENGTH DA	56 TA	46	29	25
	1	3	I KENGTH DA				
Peak	k Load, P, kN	0.524	0.546	0.314	0.297	0.309	0.298
Peak	Load, P, lbs	117.8	122.7	70.6	66.8	69.5	67.0
Uncorr. Pt. Load Strength In	dex,I _s , MPa	0.167	0.174	0.098	0.089	0.147	0.164
Uncorr. Pt. Load Strength In	ndex,I _s , psi	24.2	25.3	14.3	12.9	21.3	23.8
Size Correction	on Factor, F	1.05	1.05	1.06	1.07	0.96	0.93
Corr. Pt. Load Strength Index	x,I _{s(50)} , Mpa	0.18	0.18	0.10	0.09	0.14	0.15
Corr. Pt. Load Strength Inde	ex,I _{s(50)} , psi	26	27	15	14	20	22
		MOIST	URE CONTEN	T DATA	ı	1	
Moisture Condition	of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
moistaile Gorialiteir	Pan No.	7.0 . 10001100	7.6 1.656.1.64	7.6 7.656.754	7.6 1.656.1.64	7.0 1.000.100	7.0 1.000.100
	Pan wt. (g)	22.28	22.28	22.28	22.28	22.28	22.28
Tot	tal wet wt. (g)	199.52	199.52	199.52	199.52	199.52	199.52
	otal dry wt (g)	173.61	173.61	173.61	173.61	173.61	173.61
	e Content, %	17.1	17.1	17.1	17.1	17.1	17.1
	Comments:						
		. =					

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump

Diametral - L/D ratio>1

CTL Job No: Client:			Project No.: Date:	5128 T.021 2/8/2017		
	Port of Coos Bay Chan	nel Modification Project	By:			•
Boring:	UB-3	UB-3	UB-3	UB-3	UB-3	UB-3
Sample:	R-8	R-8	R-8	R-8	R-8	R-8
Depth, ft:	66	66	66 Cray Book	66	66	66
Visual Description:	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock	Gray Rock
Test Type	Diametral	Diametral	Diametral	Axial	Axial	Axial
Test Type ID	1 EOD A	NISOTROPIC	1	2	2	2
	FUR A	NISUTROPIC	RUCK:			
Bedding Angle Relative to Axis	None	None	None	None	None	None
Loading Orientation Rel. to Bedding	N/A	N/A	N/A	N/A	N/A	N/A
	SAN	IPLE DIMENSI	ONS	T		
Width Perpendicular to loading, W, mm	60	60	59	60	59	59
Length Perpendicular to Loading, L, mm	30	31	32			
Diameter Parallel to Loading, D, mm	60	60	59	45	26	30
Diameter at Failure, D', mm	56	55	56	43	26	24
	S ⁻	TRENGTH DA	ΓΑ	1		
Peak Load, P, kN	0.63	0.446	0.096	0.146	0.056	0.115
Peak Load, P, lbs	141.6	100.3	21.6	32.8	12.6	25.9
Uncorr. Pt. Load Strength Index,I _s , MPa	0.188	0.135	0.029	0.044	0.029	0.064
Uncorr. Pt. Load Strength Index,I _s , psi	27.2	19.6	4.2	6.4	4.2	9.3
Size Correction Factor, F	1.07	1.06	1.06	1.06	0.95	0.93
Corr. Pt. Load Strength Index,I _{S(50)} , Mpa	0.20	0.14	0.03	0.05	0.03	0.06
Corr. Pt. Load Strength Index, I _{s(50)} , psi	29	21	4	7	4	9
	MOIST	URE CONTEN	T DATA			
Moisture Condition of Specimen	As Received	As Received	As Received	As Received	As Received	As Received
Pan No.	, to i toocived	7.0 110001400	7.6 1.6061VGG	7.0 1 10001400	, to I toocived	7.0 1.0001700
Pan wt. (g)	20.55	20.55	20.55	20.55	20.55	20.55
Total wet wt. (g)	204.62	204.62	204.62	204.62	204.62	204.62
Total dry wt (g)	172.96	172.96	172.96	172.96	172.96	172.96
Moisture Content, %	20.8	20.8	20.8	20.8	20.8	20.8
Comments:				Invalid Test. Did not fail through both loading points.		

Test types: 1- Diametral, 2- Axial, 3- Block,4- Irregular Lump
Diametral - L/D ratio>1
Axial - L/D ratio 1/3 to 1
Block or Irregular Lumps, D= 30-85 mm; D/W between 1/3 and 1

PROJECT NAME	Port of Coos Bay Channel Modification - Guano Rock	TESTING DATE December 1, 2017
PROJECT NUMBER	5128	PERFORMED BY CLJ

Exploration	DE-1	DE-1	DE-1	DE-1	DE-1	DE-1	DE-1	DE-1
Sample	1a	1b	2a	2b	3a	3b	4a	4b
Depth, ft	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5
Visual Description	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray
	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone
Test Type	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP
Average Width (mm)	46.5	40	47.5	57.5	37.5	60	42.5	45
Aperture at Failure (mm)	30	38	35	27	25	32	31	22
Peak Load (lbf)	100	120	200	200	150	100	180	180
Uncorrected Point Load Strength Index, I _s (N/mm ²)	0.25	0.28	0.42	0.45	0.56	0.18	0.48	0.64
Size Correction Factor, F	0.926	0.944	0.963	0.949	0.847	0.995	0.914	0.857
Corrected Point Load Strength Index, I _{s(50)} (psi)	33.63	37.76	58.72	61.92	68.65	26.26	63.28	78.97

Exploration	DE-1	DE-1	DE-1	DE-1	DE-1	DE-1	DE-1	DE-1
Sample	5a	5b	6a	6b	7a	7b	8a	8b
Depth, ft	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5
Visual Description	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray
	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone
Test Type	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP
Average Width (mm)	37.5	35	27.5	30	37.5	40	65	30
Aperture at Failure (mm)	25	27	26	30	33	22	33	36
Peak Load (lbf)	160	180	200	180	240	200	180	120
Uncorrected Point Load Strength	0.60	0.67	0.98	0.70	0.68	0.79	0.29	0.39
Index, I _s (N/mm ²)	0.00	0.67	0.90	0.70	0.00	0.79	0.29	0.39
Size Correction Factor, F	0.847	0.848	0.797	0.839	0.901	0.835	1.020	0.874
Corrected Point Load Strength Index, I _{s(50)} (psi)	73 73	81.87	112.92	85.03	88.58	96.13	43.38	49.22

Exploration	DE-1	DE-1	DE-1	DE-1	DE-1		
Sample	9a	9b	10a	10b	10c		
Depth, ft	0-1.5	0-1.5	0-1.5	0-1.5	0-1.5		
Visual Description	Dark Gray	Dark Gray	Dark Gray	Dark Gray	Dark Gray		
	Sandstone	Sandstone	Sandstone	Sandstone	Sandstone		
Test Type	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP	Axial - LUMP		
Average Width (mm)	55	62.5	35	37.5	33.5		
Aperture at Failure (mm)	50	40	30	27	29		
Peak Load (lbf)	420	200	300	200	100		
Uncorrected Point Load Strength Index, I_s (N/mm ²)	0.53	0.28	1.00	0.69	0.36		
Size Correction Factor, F	1.079	1.056	0.869	0.862	0.854		
Corrected Point Load Strength Index, I _{s(50)} (psi)	Q2 /Q	42.80	125.75	86.23	44.52		

Client: Geotechnical Resources Inc.
Project: Coos Bay Channel Modification

Location: Coos Bay, OR Project No: GTX-318386

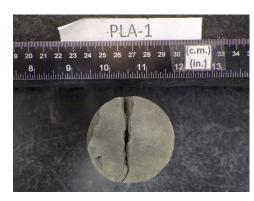
752796

Boring ID: B-13-23 Sample Type: cylinder Tested By: jss Sample ID: R-1 Test Date: 01/05/24 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

Depth:


16.6-16.9'

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	ls(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-1	16.6-16.9 ft	2.33	1.72	286	5.10	2.26	56	1.064	60	21	1,180

After

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Job No. 5128 Is(50) = the size corrected point load strength index

Client: Geotechnical Resources Inc. Project: Coos Bay Channel Modification

Coos Bay, OR Project No: GTX-318386 Location:

Boring ID: B-14-23 Sample Type: cylinder Tested By: jss Sample ID: R-5 01/05/24 Checked By: smd Test Date: 6.8-7.1' Test Id: 752797

Test Comment: Visual Description: Sample Comment:

Depth:

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	ls(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-2	6.8-7.1 ft	2.38	1.43	182	4.34	2.08	42	1.026	43	21	882

After

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Job No. 5128 Is(50) = the size corrected point load strength index

Client: Geotechnical Resources Inc.
Project: Coos Bay Channel Modification

Location: Coos Bay, OR Project No: GTX-318386

752798

Boring ID: B-14-23 Sample Type: cylinder Tested By: jss Sample ID: R-7 Test Date: 01/05/24 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---


Depth:

17.8-18.3'

Axial Point Load Strength Index of Rock by ASTM D5731

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-3	17.8-18.3 ft	2.36	1.66	384	4.97	2.23	77	1.058	82	21	1,620

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1.

The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

De = the equivalent core diameter

Is = the uncorrected point load strength index

F = the size correction factor

Job No. 5128 Is(50) = the size corrected point load strength index

Client: Geotechnical Resources, Inc.
Project Name: Coos Bay Channel Modification

Project Location Coos Bay, OR

GTX #: 318386

Test Date: 01/17/24
Tested By: jss
Checked By: smd

rock core

Sample Type:

Point Load Strength Index of Rock by ASTM D5731

Boring No.	Sample No.	Depth, ft.	Test No.	Test Type	Width (W), in.	Depth (D), in.	Area, in ²	Failure Load (P), Ib	D _e ², in²	D _{e,} in.	I _{s,} psi	F	I _{s(50)} , psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
B-4-23	R-2	31.9-32.3	PLL-1	Irregular Lump	1.65	1.30	1.61	423	2.05	1.43	206	0.867	178	19	3,910

PLL-1 before

PLL-1 after

Intact Material Failure

Notes:

Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D 5731 Table 1.

 D_e = the equivalent core diameter

 I_s = the uncorrected point load strength index

F = the size correction factor

 $I_{s(50)}$ = the size corrected point load strength index

Job No. 5128

Page 238B

Splitting Tensile Strength of Intact Rock Core Specimens (ASTM D3967)

 CTL Job No.:
 823-008P1
 Boring:
 B-15
 Date:
 9/28/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 5.5 Checked: DC

Project No.: 5128

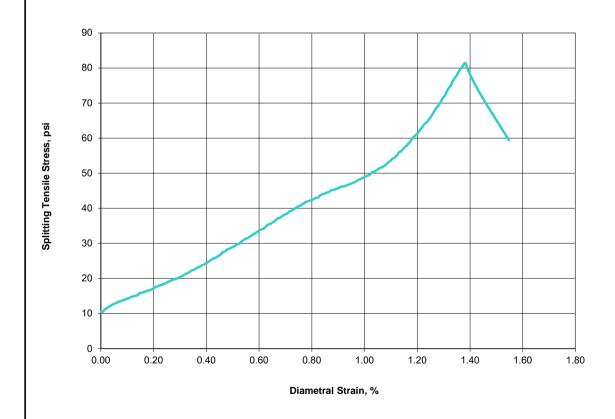
Visual Description: Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Sample was washed and in a moist state.


Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.29		
Sample Diameter, in.	2.36	Splitting Tensile Strength, psi	81
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	01
Sample Cross-Sectional Area, in ²	4.39		
Wet Density, pcf	137.3		
Dry Density, pcf	120.9		
Moisture Content, %	13.5		
Loading Rate, lb / min	260		

Stress-Strain

 CTL Job No.:
 823-008P2
 Boring:
 B-15
 Date:
 9/28/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 15.5 Checked: DC

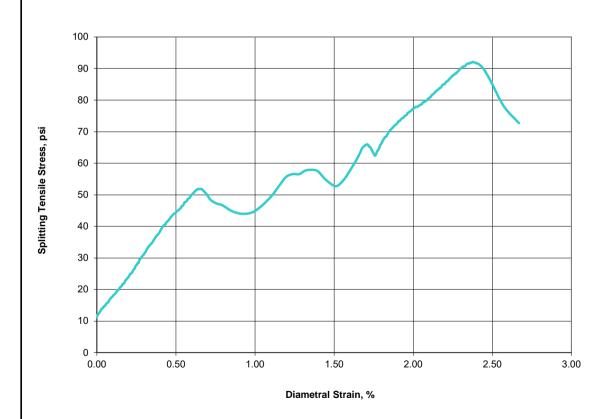
Project No.: 5128

Visual Description: Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.19		
Sample Diameter, in.	2.38	Splitting Topoilo Strongth poi	92
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	92
Sample Cross-Sectional Area, in ²	4.46		
Wet Density, pcf	137.9		
Dry Density, pcf	122.9		
Moisture Content, %	12.1		
Loading Rate, lb / min	280		

 CTL Job No.:
 823-008P3
 Boring:
 B-15
 Date:
 9/28/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 22.5 Checked: DC

Project No.: 5128

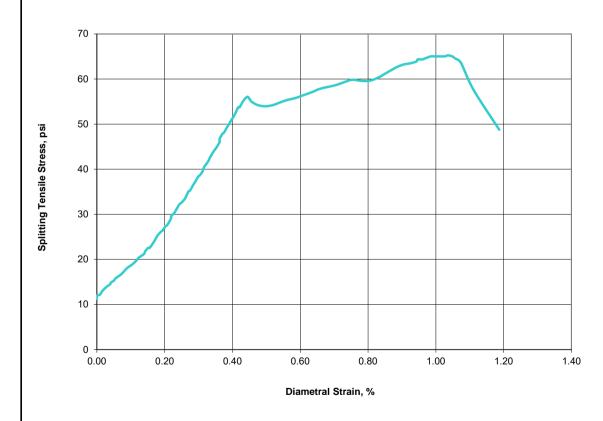
Visual Description: Dark Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Sample was washed and in a moist state.


Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.19		
Sample Diameter, in.	2.38	Splitting Tensile Strength, psi	65
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	03
Sample Cross-Sectional Area, in ²	4.43		
Wet Density, pcf	137.2		
Dry Density, pcf	124.4		
Moisture Content, %	10.3		
Loading Rate, lb / min	280		

 CTL Job No.:
 823-008Q3
 Boring:
 B-21
 Date:
 9/28/2016

 Client:
 GRI
 Sample:
 R-7
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 20.5 Checked: DC

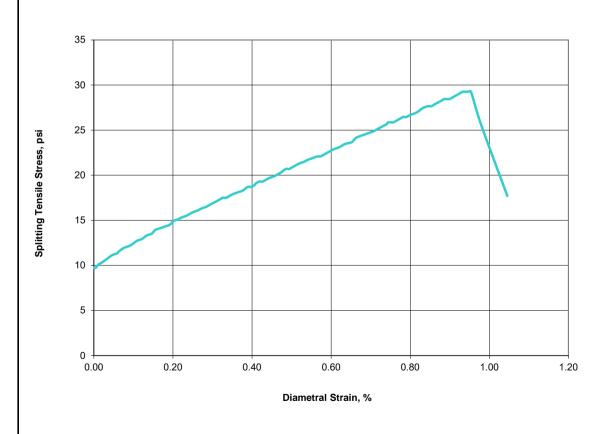
Project No.: 5128

Visual Description: Very Dark Brown Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.34		
Sample Diameter, in.	2.39	Splitting Tancila Strongth poi	29
Thickness / Diameter	0.6	Splitting Tensile Strength, psi	29
Sample Cross-Sectional Area, in ²	4.49		
Wet Density, pcf	117.2		
Dry Density, pcf	91.6		
Moisture Content, %	27.9		
Loading Rate, lb / min	250		

 CTL Job No.:
 823-008S1
 Boring:
 B-23
 Date:
 9/28/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 9.5 Checked: DC

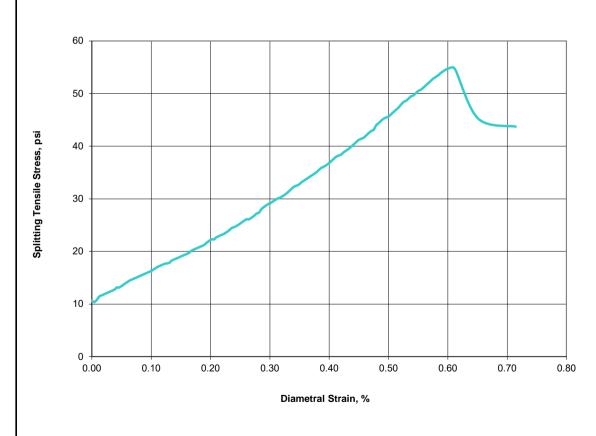
Project No.: 5128

Visual Description: Very Dark Brown Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.26		
Sample Diameter, in.	2.38	Splitting Topoilo Strongth poi	55
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	55
Sample Cross-Sectional Area, in ²	4.45		
Wet Density, pcf	122.7		
Dry Density, pcf	97.8		
Moisture Content, %	25.4		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008S2
 Boring:
 B-24
 Date:
 9/28/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 4 Checked: DC

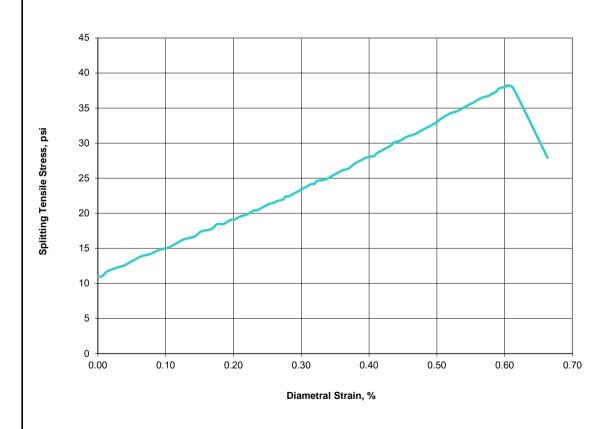
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.22		
Sample Diameter, in.	2.38	Splitting Tancila Strongth noi	38
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	30
Sample Cross-Sectional Area, in ²	4.46		
Wet Density, pcf	136.0		
Dry Density, pcf	117.1		
Moisture Content, %	16.1		
Loading Rate, lb / min	280		

 CTL Job No.:
 823-008S3
 Boring:
 B-24
 Date:
 9/28/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 18.75 Checked: DC

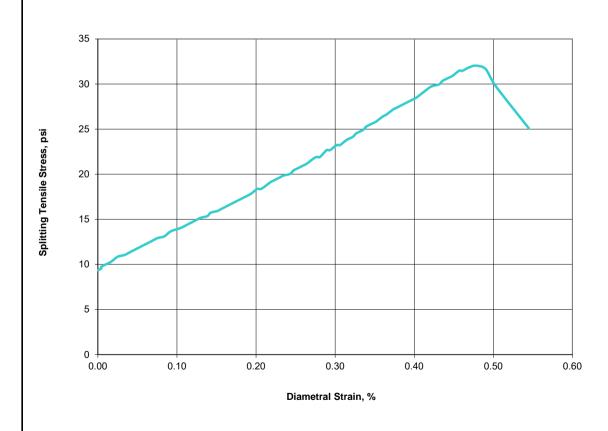
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.42		
Sample Diameter, in.	2.39	Splitting Topoilo Strongth poi	32
Thickness / Diameter	0.6	Splitting Tensile Strength, psi	32
Sample Cross-Sectional Area, in ²	4.47		
Wet Density, pcf	139.5		
Dry Density, pcf	123.6		
Moisture Content, %	12.9		
Loading Rate, lb / min	240		

CTL Job No.: 823-008S4 Boring: B-24 Date: 9/28/2016 Client: Sample: R-5 By: PJ GRI

Port of Coos Bay Project Name:

Channel Modification Depth,ft.: 24 Checked: DC

Project No.: 5128

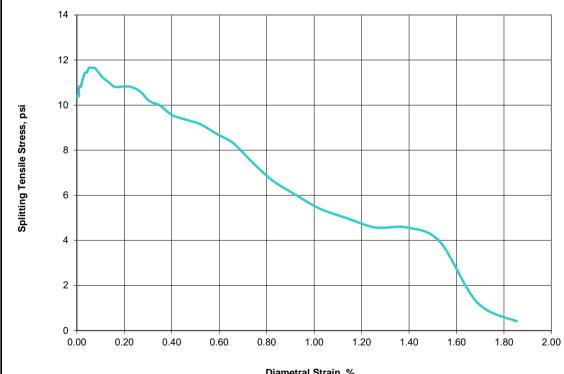
Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Sample was washed and in a moist state.


Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks: This specimen was so weak that the seating load was very

close to the peak load.

Sample Thickness, in.	1.28		
Sample Diameter, in.	2.40	Splitting Tensile Strength, psi	12
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	12
Sample Cross-Sectional Area, in ²	4.53		
Wet Density, pcf	134.7		
Dry Density, pcf	117.0		
Moisture Content, %	15.1		
Loading Rate, lb / min	260		

CTL Job No.: 823-008T1 Boring: B-25 Date: 9/29/2016 Client: Sample: R-2 By: PJ GRI

Port of Coos Bay Project Name:

Channel Modification Depth,ft.: 8 Checked: DC

Project No.: 5128

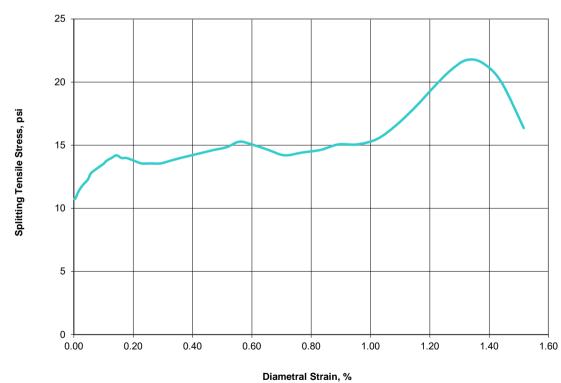
Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Sample was washed and in a moist state.


Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks: This specimen was so weak that the seating load was very

close to the peak load.

Sample Thickness, in.	1.25		
Sample Diameter, in.	2.37	Splitting Tensile Strength, psi	22
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	22
Sample Cross-Sectional Area, in ²	4.40		
Wet Density, pcf	128.2		
Dry Density, pcf	108.5		
Moisture Content, %	18.1		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008T2
 Boring:
 B-25
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 17 Checked: DC

Project No.: 5128

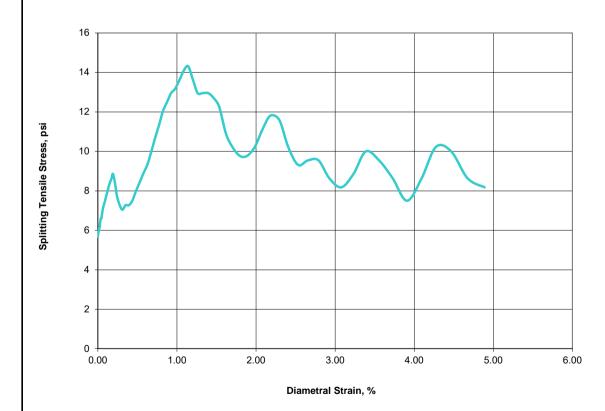
Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Sample was washed and in a moist state.


Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks: This specimen was so weak that the seating load was very

close to the peak load.

Sample Thickness, in.	1.21		
Sample Diameter, in.	2.32	Splitting Tensile Strength, psi	14
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	14
Sample Cross-Sectional Area, in ²	4.24		
Wet Density, pcf	126.5		
Dry Density, pcf	106.0		
Moisture Content, %	19.4		
Loading Rate, lb / min	290		

 CTL Job No.:
 823-008T3
 Boring:
 B-26
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 13 Checked: DC

Project No.: 5128

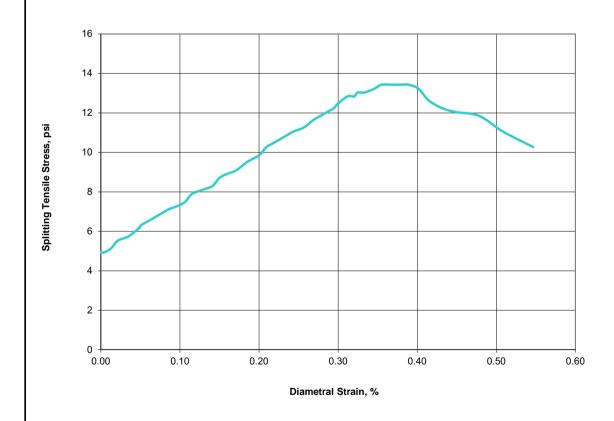
Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Sample was washed and in a moist state.


Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.38		
Sample Diameter, in.	2.34	Splitting Topoilo Strongth poi	13
Thickness / Diameter	0.6	Splitting Tensile Strength, psi	13
Sample Cross-Sectional Area, in ²	4.31		
Wet Density, pcf	126.0		
Dry Density, pcf	104.2		
Moisture Content, %	20.9		
Loading Rate, lb / min	250		

Stress-Strain

JOB NO. 5128

 CTL Job No.:
 823-008U1
 Boring:
 B-27
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 4 Checked: DC

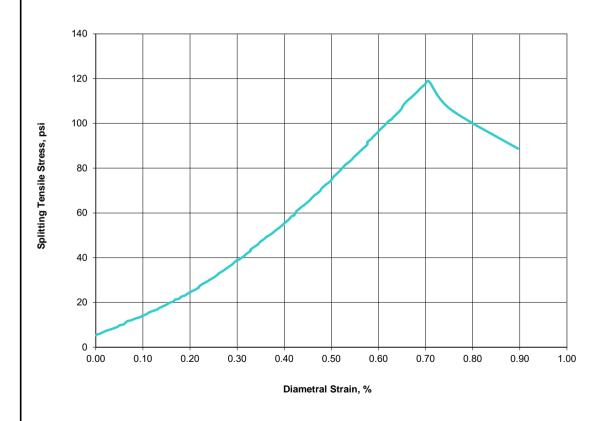
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.28		
Sample Diameter, in.	2.38	Calitting Tancila Ctrongth aci	119
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	119
Sample Cross-Sectional Area, in ²	4.44		
Wet Density, pcf	122.5		
Dry Density, pcf	95.4		
Moisture Content, %	28.4		
Loading Rate, lb / min	260		

 CTL Job No.:
 823-008U2
 Boring:
 B-27
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 21 Checked: DC

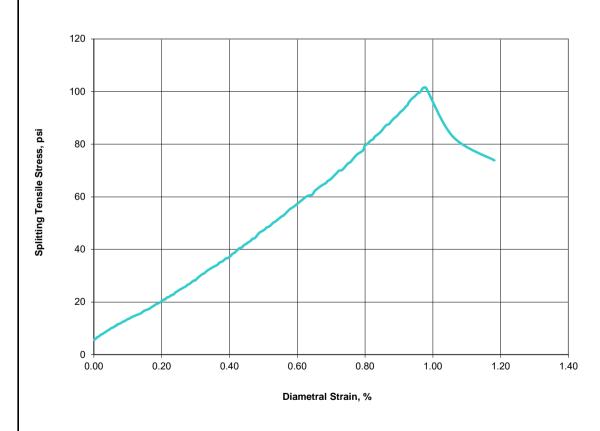
Project No.: 5128

Visual Description: Very Dark Bluish Gray

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.22		
Sample Diameter, in.	2.38	Splitting Tancila Strongth noi	101
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	101
Sample Cross-Sectional Area, in ²	4.44		
Wet Density, pcf	116.4		
Dry Density, pcf	93.6		
Moisture Content, %	24.4		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008V1
 Boring:
 B-28
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 10 Checked: DC

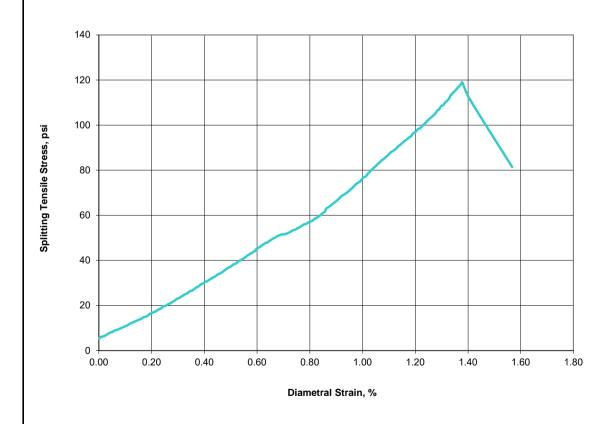
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.23		
Sample Diameter, in.	2.38	Splitting Topoilo Strongth poi	119
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	119
Sample Cross-Sectional Area, in ²	4.45		
Wet Density, pcf	121.9		
Dry Density, pcf	98.2		
Moisture Content, %	24.2		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008V2
 Boring:
 B-28
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 12 Checked: DC

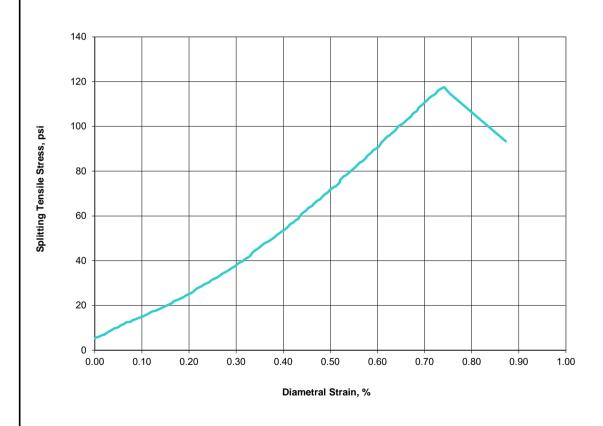
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.28		
Sample Diameter, in.	2.39	Chlitting Tancila Ctrongth noi	117
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	117
Sample Cross-Sectional Area, in ²	4.47		
Wet Density, pcf	119.8		
Dry Density, pcf	93.5		
Moisture Content, %	28.2		
Loading Rate, lb / min	260		

 CTL Job No.:
 823-008V3
 Boring:
 B-28
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 19 Checked: DC

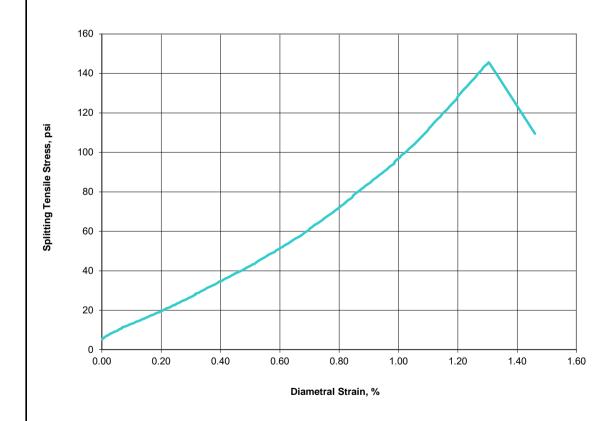
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.24		
Sample Diameter, in.	2.38	Splitting Tensile Strength, psi	146
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	140
Sample Cross-Sectional Area, in ²	4.46		
Wet Density, pcf	122.7		
Dry Density, pcf	97.4		
Moisture Content, %	26.0		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008V4
 Boring:
 B-29
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 2 Checked: DC

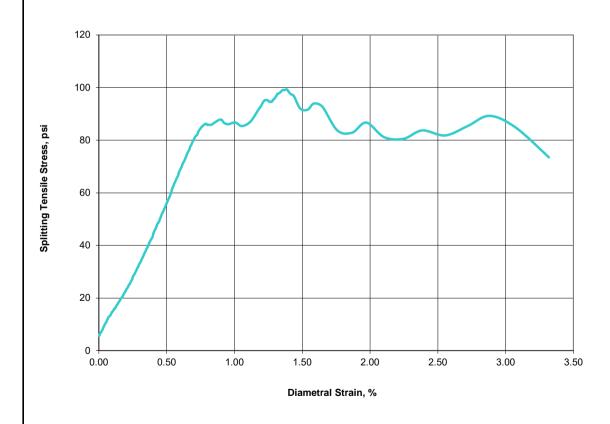
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.26		
Sample Diameter, in.	2.38	Splitting Topoilo Strongth poi	99
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	99
Sample Cross-Sectional Area, in ²	4.44		
Wet Density, pcf	125.5		
Dry Density, pcf	101.1		
Moisture Content, %	24.2		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008V5
 Boring:
 B-29
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 12 Checked: DC

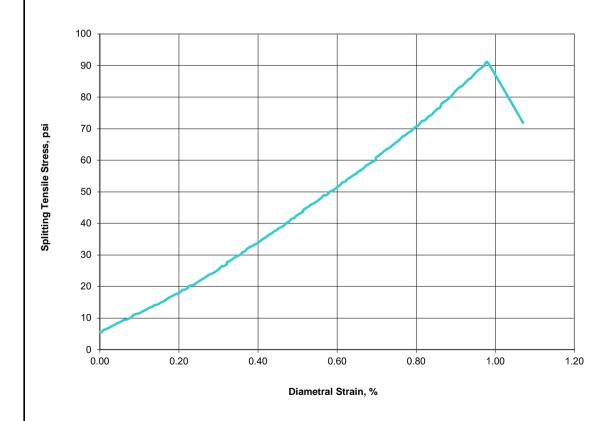
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.28		
Sample Diameter, in.	2.34	Splitting Tensile Strength, psi	91
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	91
Sample Cross-Sectional Area, in ²	4.29		
Wet Density, pcf	119.8		
Dry Density, pcf	95.6		
Moisture Content, %	25.4		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008W1
 Boring:
 B-30
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 14 Checked: DC

Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.26		
Sample Diameter, in.	2.38	Splitting Tensile Strength, psi	25
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	25
Sample Cross-Sectional Area, in ²	4.46		
Wet Density, pcf	130.7		
Dry Density, pcf	112.2		
Moisture Content, %	16.4		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008W2
 Boring:
 B-30
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 22 Checked: DC

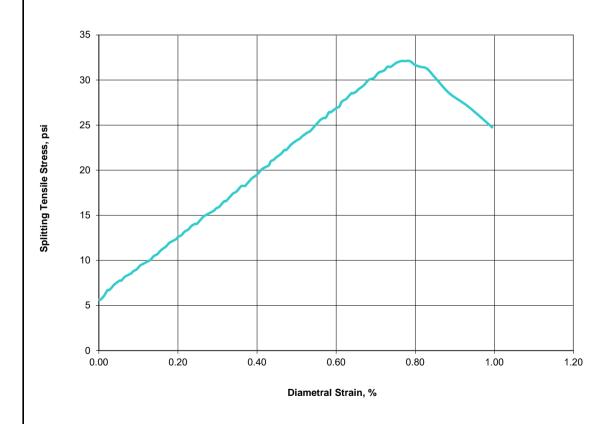
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.32		
Sample Diameter, in.	2.30	Splitting Tensile Strength, psi	32
Thickness / Diameter	0.6	Splitting Tensile Strength, psi	32
Sample Cross-Sectional Area, in ²	4.16		
Wet Density, pcf	131.8		
Dry Density, pcf	110.7		
Moisture Content, %	19.1		
Loading Rate, lb / min	260		

 CTL Job No.:
 823-008W3
 Boring:
 B-31
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-2
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 10 Checked: DC

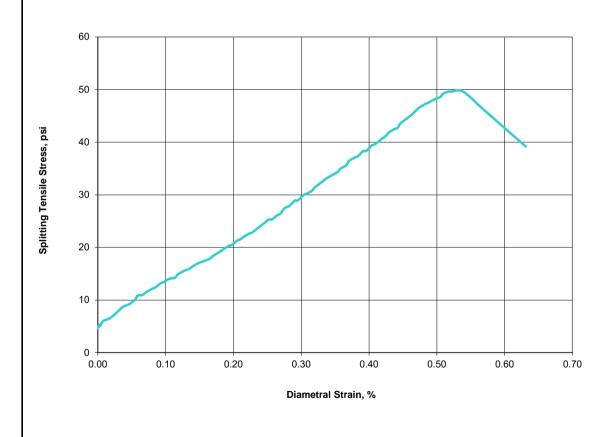
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.28		
Sample Diameter, in.	2.38	Splitting Tensile Strength, psi	50
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	30
Sample Cross-Sectional Area, in ²	4.44		
Wet Density, pcf	130.0		
Dry Density, pcf	107.9		
Moisture Content, %	20.6		
Loading Rate, lb / min	260		

 CTL Job No.:
 823-008W4
 Boring:
 B-31
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 20 Checked: DC

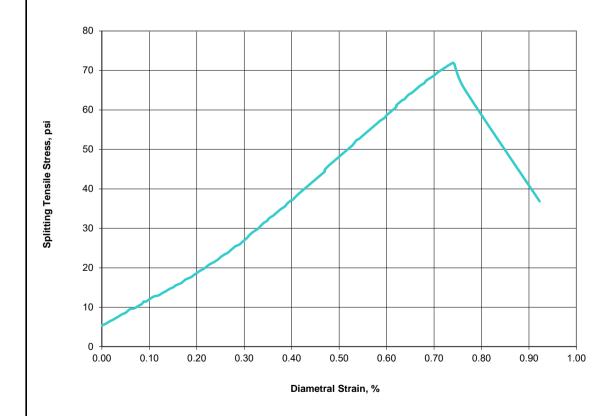
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.24		
Sample Diameter, in.	2.39	Splitting Topoilo Strongth poi	72
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	12
Sample Cross-Sectional Area, in ²	4.47		
Wet Density, pcf	130.6		
Dry Density, pcf	112.7		
Moisture Content, %	16.0		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008W5
 Boring:
 B-31
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-5
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 24 Checked: DC

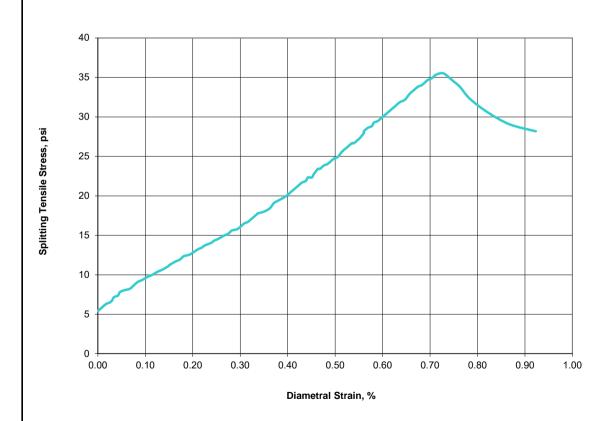
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.24		
Sample Diameter, in.	2.37	Splitting Tensile Strength, psi	36
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	30
Sample Cross-Sectional Area, in ²	4.42		
Wet Density, pcf	129.4		
Dry Density, pcf	106.9		
Moisture Content, %	21.0		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008X1
 Boring:
 B-32
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 2.5 Checked: DC

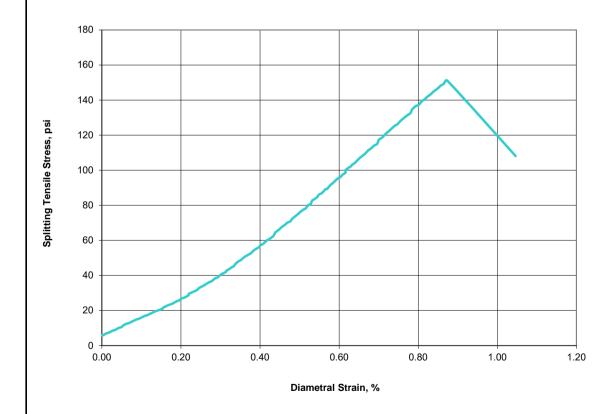
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.19		
Sample Diameter, in.	2.37	Splitting Tensile Strength, psi	151
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	131
Sample Cross-Sectional Area, in ²	4.41		
Wet Density, pcf	124.5		
Dry Density, pcf	101.2		
Moisture Content, %	23.1		
Loading Rate, lb / min	280		

 CTL Job No.:
 823-008X2
 Boring:
 B-32
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 12.5 Checked: DC

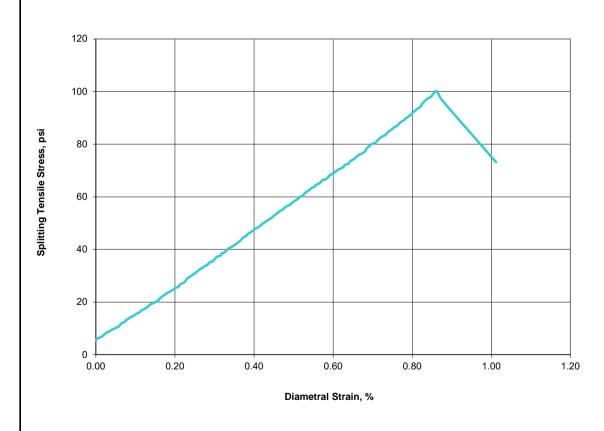
Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.26		
Sample Diameter, in.	2.35	Splitting Topoilo Strongth poi	100
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	100
Sample Cross-Sectional Area, in ²	4.34		
Wet Density, pcf	124.2		
Dry Density, pcf	100.2		
Moisture Content, %	24.0		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008X3
 Boring:
 B-32
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-4
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 16.5 Checked: DC

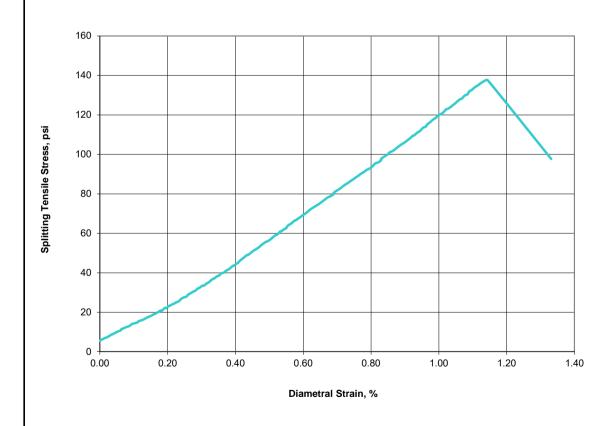
Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.22		
Sample Diameter, in.	2.35	Splitting Tensile Strength, psi	138
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	130
Sample Cross-Sectional Area, in ²	4.34		
Wet Density, pcf	117.1		
Dry Density, pcf	93.6		
Moisture Content, %	25.2		
Loading Rate, lb / min	280		

 CTL Job No.:
 823-008X4
 Boring:
 B-33
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 2 Checked: DC

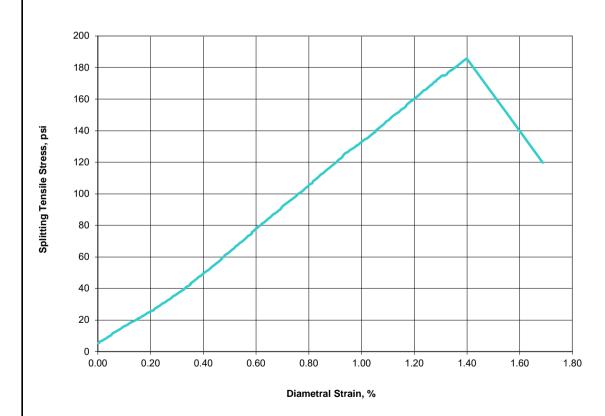
Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.29		
Sample Diameter, in.	2.37	Splitting Topoilo Strongth poi	186
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	100
Sample Cross-Sectional Area, in ²	4.39		
Wet Density, pcf	112.8		
Dry Density, pcf	91.1		
Moisture Content, %	23.9		
Loading Rate, lb / min	260		

 CTL Job No.:
 823-008X5
 Boring:
 B-33
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-7
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 21 Checked: DC

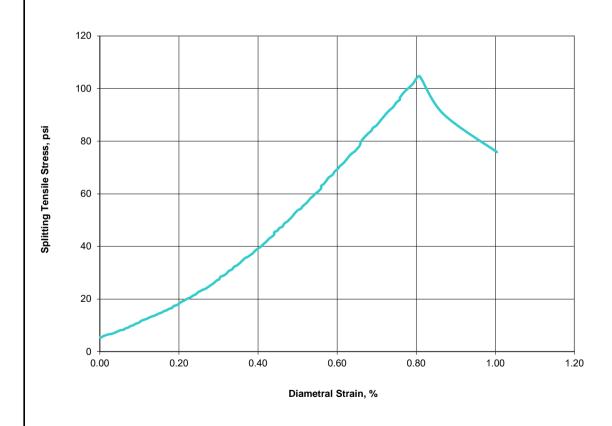
Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.23		
Sample Diameter, in.	2.36	Splitting Topoilo Strongth poi	105
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	105
Sample Cross-Sectional Area, in ²	4.38		
Wet Density, pcf	125.5		
Dry Density, pcf	102.4		
Moisture Content, %	22.6		
Loading Rate, lb / min	280		

 CTL Job No.:
 823-008Y1
 Boring:
 B-40
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-1
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 6 Checked: DC

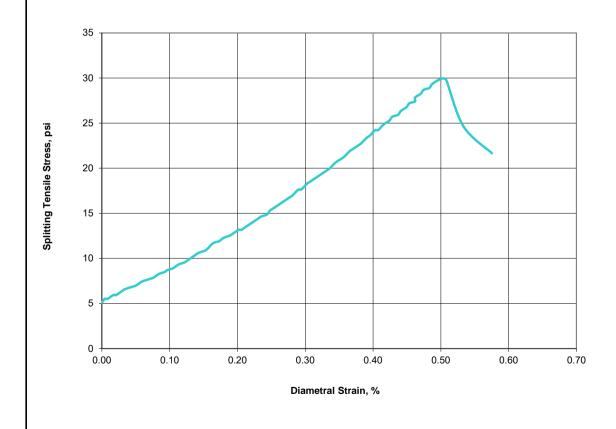
Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.26		
Sample Diameter, in.	2.38	Splitting Tancila Strongth poi	30
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	30
Sample Cross-Sectional Area, in ²	4.46		
Wet Density, pcf	131.2		
Dry Density, pcf	110.4		
Moisture Content, %	18.8		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008Y2
 Boring:
 B-40
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-3
 By:
 PJ

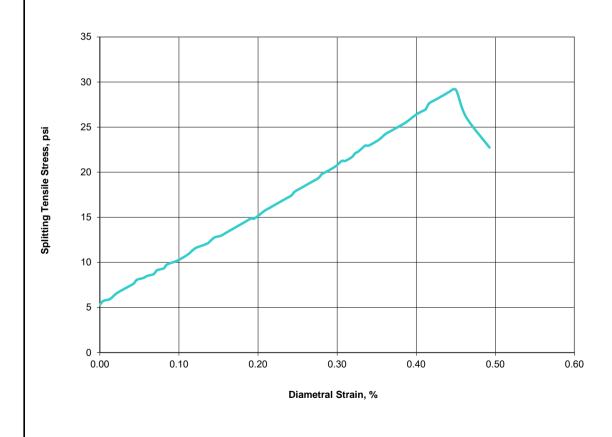
Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 16 Checked: DC

Project No.: 5128

Visual Description: Very Dark Bluish Gray Rock

Approx. Size of Largest Mineral Grain, in:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.27		
Sample Diameter, in.	2.36	Splitting Topoilo Strongth noi	29
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	29
Sample Cross-Sectional Area, in ²	4.36		
Wet Density, pcf	129.9		
Dry Density, pcf	108.9		
Moisture Content, %	19.2		
Loading Rate, lb / min	270		

 CTL Job No.:
 823-008Y3
 Boring:
 B-40
 Date:
 9/29/2016

 Client:
 GRI
 Sample:
 R-7
 By:
 PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 26 Checked: DC

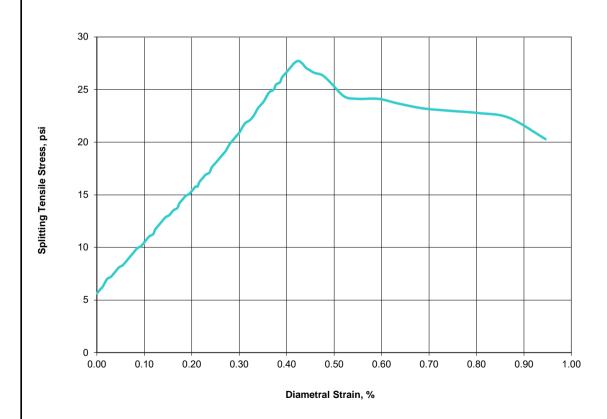
Project No.: 5128

Visual Description: Very Dark Greenish Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Sample was washed and in a moist state.

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.20		
Sample Diameter, in.	2.36	Splitting Topoilo Strongth poi	28
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	20
Sample Cross-Sectional Area, in ²	4.37		
Wet Density, pcf	129.9		
Dry Density, pcf	108.7		
Moisture Content, %	19.5		
Loading Rate, lb / min	280		

823-010D2 Boring: UB-1 Date: 2/21/2017 CTL Job No.: Client: Sample: R-5 By: PJ GRI Port of Coos Bay

Project Name: **Channel Modification** Depth,ft.: 67 Checked: DC

Project No.: 5128 T2.021

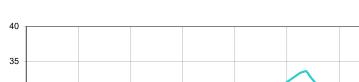
Visual Description: Olive Brown Rock

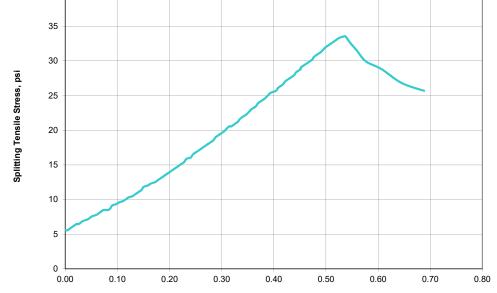
Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Air Dry


Test Temperature, (°C) Ambient


Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.23		
Sample Diameter, in.	2.33	Calitting Tancila Strangth noi	34
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	34
Sample Cross-Sectional Area, in ²	4.25		
Wet Density, pcf	133.1		
Dry Density, pcf	113.5		
Moisture Content, %	17.2		
Loading Rate, lb / min	180		

Stress-Strain

Diametral Strain, %

 CTL Job No.:
 823-010D3
 Boring: UB-1
 Date: 2/21/2017

 Client:
 GRI
 Sample: R-6
 By: PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 71 Checked: DC

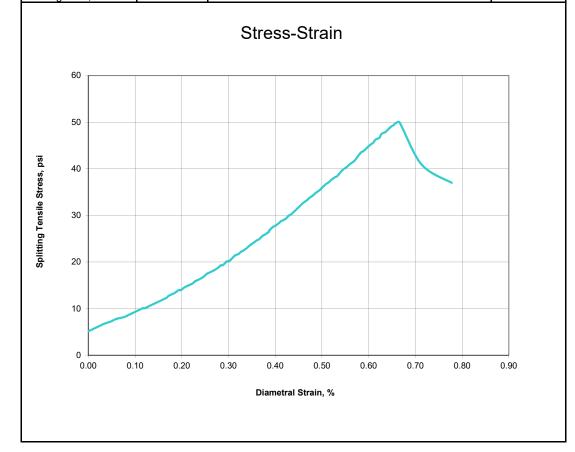
Project No.: 5128 T2.021

Visual Description: Olive Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Air Dry

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.33		
Sample Diameter, in.	2.33	Splitting Tensile Strength, psi	50
Thickness / Diameter	0.6	Splitting Tensile Strength, psi	30
Sample Cross-Sectional Area, in ²	4.25		
Wet Density, pcf	118.9		
Dry Density, pcf	101.8		
Moisture Content, %	16.8		
Loading Rate, lb / min	160		

 CTL Job No.:
 823-010E1
 Boring: UB-2
 Date: 2/21/2017

 Client:
 GRI
 Sample: R-3
 By: PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 50 Checked: DC

Project No.: 5128 T2.021

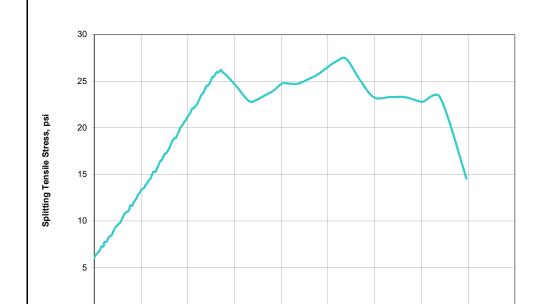
Visual Description: Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:

Moisture Condition at Test Air Dry


Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.15		_
Sample Diameter, in.	2.29	Splitting Tancila Strangth nei	27
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	21
Sample Cross-Sectional Area, in ²	4.12		
Wet Density, pcf	133.2		
Dry Density, pcf	114.2		
Moisture Content, %	16.6		
Loading Rate, lb / min	190		

Stress-Strain

0.80

Diametral Strain, %

1.00

1.20

1.40

0.00

0.20

0.40

0.60

1.60

1.80

 CTL Job No.:
 823-010E2
 Boring: UB-2
 Date: 2/21/2017

 Client:
 GRI
 Sample: R-5
 By: PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 63 Checked: DC

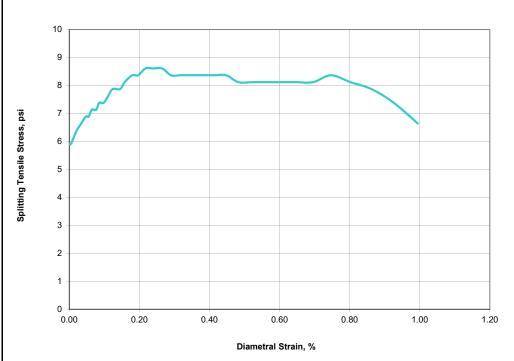
Project No.: 5128 T2.021

Visual Description: Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Air Dry

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.10		
Sample Diameter, in.	2.34	Splitting Tensile Strength, psi	9
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	9
Sample Cross-Sectional Area, in ²	4.31		
Wet Density, pcf	132.7		
Dry Density, pcf	112.1		
Moisture Content, %	18.4		
Loading Rate, lb / min	190		

 CTL Job No.:
 823-010F1
 Boring: UB-3
 Date: 2/21/2017

 Client:
 GRI
 Sample: R-2
 By: PJ

Project Name: Port of Coos Bay

Channel Modification Depth,ft.: 35 Checked: DC

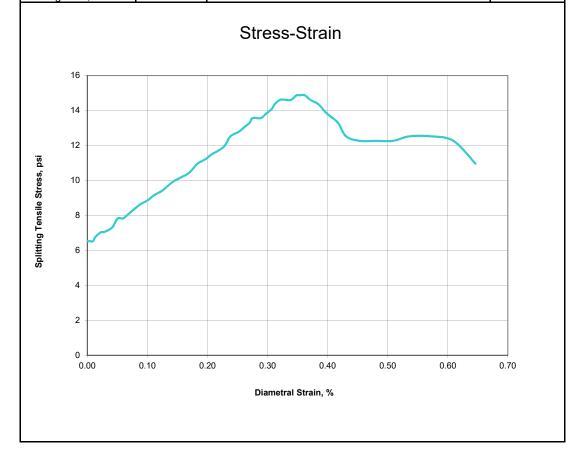
Project No.: 5128 T2.021

Visual Description: Gray Rock

Approx. Size of Largest Mineral Grain, in:

Bedding Angle Relative to Axis:

Loading Orientation Rel. to Bedding:


Moisture Condition at Test Air Dry

Test Temperature, (°C) Ambient

Bearing Strips: Cardboard

Remarks:

Sample Thickness, in.	1.12		
Sample Diameter, in.	2.18	Splitting Tensile Strength, psi	15
Thickness / Diameter	0.5	Splitting Tensile Strength, psi	13
Sample Cross-Sectional Area, in ²	3.74		
Wet Density, pcf	125.3		
Dry Density, pcf	106.5		
Moisture Content, %	17.7		
Loading Rate, lb / min	200		

				AS	TM3967-16	Splitting Ten	sile Strength	of Intact Ro	ock Core Spe	cimens						
Test No.		1	Date Sampled: Date					of Test:	1/2/20	024	Test	ed by:		Evans Lin	eweaver	
Location of Sample								Report								
Boring -		•		Sample				Depth-								
Description	of Specime	ens:			•			•	•							
		<u> </u>	<i>(</i> :)			TI 1	<i>(</i> :)			I		. (0/)	ı	ı	ı	ı
Specimen No.		Diamet	er (in.)			Inickne	ess (in.)		Rate of loading	Moisti	ire Cont	ent (%)	Load (Lbf)	Strength:	Strength:	Failure
	1	2	3	Avg.	1	2	3	Avg.	(in/min)	Receiv	Prep	Test	LOAU (LDI)	σt (psi)	σ t (Mpa)	Туре
B13 R2 24.3-24.5	2.400	2.390	2.390	2.39	1.520	1.510	1.200	1.41	0.055			15.8%	149	28	ე.19	see photo
B13 R2 22.1-22.3	2.340	2.370	2.370	2.36	1.720	1.700	1.720	1.71	0.055			17.0%	394	52	0.43	see photo
B14 R5 8.3-8.5	3.360	2.360	2.350	2.69	1.740	1.760	1.780	1.76	0.055			17.5%	318	43	ე.29	see photo
B14 R5 9.8-10.1	2.370	2.360	2.370	2.37	1.850	1.860	1.850	1.85	0.055			16.8%	191	28	ე.19	see photo
B14 R6 11.2-11.6	2.360	2.350	2.350	2.35	1.590	1.570	1.610	1.59	0.055			17.5%	704	120	ე.83	see photo
B14 R6 12.9-13.6	2.380	2.370	2.380	2.38	1.950	1.900	1.880	1.91	0.055			19.3%	788	110	0.76	see photo
B15 R2 8.1-8.4	2.290	2.290	2.280	2.29	1.560	1.610	1.620	1.60	0.055			25.6%	368	54	0.44	see photo
B15 R1 6.8-7.0	2.310	2.300	2.300	2.30	1.610	1.620	1.630	1.62	0.055			21.8%	821	140	0.97	see photo
B15 R5 22.2-22.6	2.350	2.370	2.360	2.36	1.040	1.000	1.060	1.03	0.055			16.2%	171	45	0.31	see photo
B4 R2 28.6-28.7					Sample br	oke apart du	ring prepera	ation and wa	ıs rendered ı	untestab	е					
B4 R2 28.9-29.1					Sample br	oke apart du	ring prepera	ation and wa	ıs rendered ı	untestab	e					
									Aver	age Stre	ngth (σ t):		71	0.49	
									Sta	ındard De	eviation			40	0.27	I
									Coef	ficient of	Variatio	n:		55.6	55.6	

CTL Job No: 823-006 Project No.: 5128 Client: GRI Date: 12/4/2015 **Project Name:** By: PJ B-4 Boring: B-7 B-7 Sample: Depth, ft: 36-39 20-22.5 8-11 Soil Description: Brown Rock Brown Rock Brown Rock NATURAL MOISTURE CONTENT OF SAMPLE: DrumNo. Drum wt. (g) 1742 1722 1742 Total wet wt. (g) 2227.6 2244.5 2250.1 Total dry wt (g) 2190.1 2202.1 2204 Natural % H2O Cycle # 1 Beginning H2O Temp (°C) 18.8 18.8 18.9 Ending H2O Temp (°C) 19.0 19.0 19.1 Average H2O Temp (°C) 18.9 18.9 19.0 Drum & Dry Rock (g) 1968.2 2181.7 1855.0 Cycle # 2 Beginning H2O Temp (°C) 19.1 19.2 19.1 Ending H2O Temp (°C) 19.2 19.2 19.3 Average H2O Temp (°C) 19.2 19.2 19.3 Drum & Dry Rock (g) 1742.7 2153.8 1809.2 SLAKE DURABILITY **INDEX** 0.2 89.9 14.5 (percent retained after second cycle) Standard Verbal **Description and** comments (Type I - Retained pieces remain virtually unchanged) Type III Type I Type II (Type II - Retained material consists of large & small pieces. (Type III - Retained material is exclusively small fragments

CTL Job No: 823-008A Project No.: 5128 Client: GRI Date: 9/20/2016 Project Name: Port of Coos Bay Channel Modification Project By: PJ Boring: B-15 B-21 B-22 B-23 B-15 B-21 Sample: R-3 R-4 R-3 R-7 R-2 R-3 Depth, ft: 9.5 15.5 6.5 20.5 16 8.5 Soil Description: Gray Rock Gray Rock Very Dark Very Dark Very Dark Very Dark Brown Rock Brown Rock Brown Rock **Brown Rock** In order to keep as much material intact as possible for additional testing, pieces tested ranged in weight from 30g to 70g rather than 40g to 60g as called from by the spec. **NATURAL MOISTURE CONTENT OF SAMPLE:** DrumNo Drum wt. (g) 1741.9 1722.1 1741.9 1722.1 1741.9 1722.1 Total wet wt. (g) 2266.4 2208.3 2274.3 2214 2258 2211.9 Total dry wt (g) 2220.6 2158.2 2153 2108 2114 2139.5 Natural % H2O Cycle # 1 Beginning H2O Temp (°C) 22.3 22.1 22.3 22.1 23.4 23.4 Ending H2O Temp (°C) 22.3 22.3 22.1 22.1 23.4 23.4 Average H2O Temp (°C) 22.3 22.3 22.1 22.1 23.4 23.4 Drum & Dry Rock (g) 2127.8 1890.1 1817.3 1895.8 1804.9 2074.1 Cycle # 2 Beginning H2O Temp (°C) 22.5 22.5 22.2 22.2 23.6 23.6 23.6 Ending H2O Temp (°C) 22.5 22.5 22.2 22.2 23.6 Average H2O Temp (°C) 22.5 22.5 22.2 22.2 23.6 23.6 Drum & Dry Rock (g) 2030.5 1804.6 1742.3 1746.3 1744.2 1903.0 **SLAKE DURABILITY INDEX** 60.3 18.9 0.1 6.3 0.6 46.2 (percent retained after second cycle) **Standard Verbal Description and** comments (Type I - Retained pieces remain virtually unchanged) Type II Type III Type III Type III Type III Type I (Type II - Retained material consists of large & small pieces. (Type III - Retained material

s exclusively small fragments)

CTL Job No:	823-008B			Project No.:	5128					
Client:					9/29/2016	-				
Project Name:	Port of Coos Ba	ay Channel Mod	fication Project	Ву:	PJ					
Boring:	B-24	B-24	B-25	B-26	B-27	B-27				
Sample:	R-2	R-5	R-3	R-1	R-1	R-4				
Depth, ft:	8	24	10	4	7	21				
Soil Description:	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock	Very Dark Bluish Gray Rock				
	In order to keep as much material intact as possible for additional testing, pieces tested ranged in weight from 30g to 70g rather than 40g to 60g as called from by the spec.									
NATURAL MOISTURE CONTENT OF SAMPLE:										
DrumNo.	1	2	1	2	1	2				
Drum wt. (g)	1741.9	1722.1	1741.9	1722.1	1741.9	1722.1				
Total wet wt. (g)	2253.9	2257.5	2224.7	2179	2257.9	2261.2				
Total dry wt (g)	2192.9	2197.4	2146.9	2102.4	2152.1	2144.1				
Natural % H2O	13.5	12.6	19.2	20.1	25.8	27.7				
		Cy	/cle # 1							
Beginning H2O Temp (°C)	23.1	23.1	22.6	22.6	22.4	22.4				
Ending H2O Temp (°C)	23.1	23.1	22.6	22.6	22.4	22.4				
Average H2O Temp (°C)	23.1	23.1	22.6	22.6	22.4	22.4				
Drum & Dry Rock (g)	1762.0	1722.3	1745.0	1724.8	2139.2	2133.5				
		Cy	/cle # 2							
Beginning H2O Temp (°C)	23.2	23.2	22.9	22.9	22.3	22.3				
Ending H2O Temp (°C)	23.2	23.2	22.9	22.9	22.3	22.3				
Average H2O Temp (°C)	23.2	23.2	22.9	22.9	22.3	22.3				
Drum & Dry Rock (g)	1742.0	1722.2	1744.4	1722.6	2123.4	2120.1				
SLAKE DURABILITY INDEX (percent retained after second cycle)	0.0	0.0	0.6	0.1	93.0	94.3				
Standard Verbal Description and comments (Type I - Retained pieces remain virtually unchanged) (Type II - Retained material consists of large & small pieces. (Type III - Retained material is exclusively small fragments)	Type III	Type III	Type III	Type III	Type II	Type II				

CTL Job No: 823-008C Project No.: 5128 Client: GRI Date: 9/29/2016 Project Name: Port of Coos Bay Channel Modification Project By: PJ **Boring:** B-28 B-29 B-29 B-30 B-30 B-31 Sample: R-2 R-2 R-3 R-1 R-3 R-1 Depth, ft: 12 12 14.5 25 **Soil Description:** Very Dark Very Dark Very Dark Very Dark Very Dark Very Dark Bluish Gray Bluish Gray Bluish Gray Bluish Gray Bluish Gray Bluish Gray Rock Rock Rock Rock Rock Rock In order to keep as much material intact as possible for additional testing, pieces tested ranged in weight from 30g to 70g rather than 40g to 60g as called from by the spec. **NATURAL MOISTURE CONTENT OF SAMPLE:** DrumNo. 1 2 2 2 1 Drum wt. (g) 1741.9 1722.1 1741.9 1722.1 1741.9 1722.1 Total wet wt. (g) 2262.8 2250 2255.1 2239.4 2262.5 2257.1 Total dry wt (g) 2157.3 2131.8 2150.1 2195.3 2184.8 2171.4 Natural % H2O 25.4 28.9 25.7 9.3 17.5 19.1 Cycle # 1 Beginning H2O Temp (°C) 21.9 21.9 22.2 22.2 21.7 21.7 Ending H2O Temp (°C) 21.9 21.9 22.2 22.2 21.7 21.7 Average H2O Temp (°C) 21.9 21.9 22.2 22.2 21.7 21.7 Drum & Dry Rock (g) 2168.2 2158.2 2133.6 2147.0 1750.1 1730.2 Cycle # 2 Beginning H2O Temp (°C) 22.1 22.1 22.5 22.5 22.1 22.1 Ending H2O Temp (°C) 22.1 22.1 22.5 22.5 22.1 22.1 Average H2O Temp (°C) 22.1 22.1 22.5 22.5 22.1 22.1 Drum & Dry Rock (g) 2115.4 2088.6 2111.7 2119.1 1742.3 1722.3 **SLAKE DURABILITY INDEX** 89.9 89.5 90.6 83.9 0.1 0.0 (percent retained after second cycle) Standard Verbal **Description and** comments (Type I - Retained pieces remain virtually unchanged) Type II Type II Type II Type III Type III Type II (Type II - Retained material consists of large & small pieces. (Type III - Retained material is exclusively small fragments)

CTL Job No: <u>823-008D</u> Project No.: <u>5128</u>

Client: GRI Date: 9/29/2016

Project Name: Port of Coos Bay Channel Modification Project By: PJ B-32 B-33 B-33 B-40 **Boring:** B-40 Sample: R-1 R-1 R-7 R-1 R-7 2.5 Depth, ft: 21 6 26 **Soil Description:** Very Dark Very Dark Very Dark Very Dark Very Dark Greenish Gray Greenish Gray Bluish Gray Bluish Gray Greenish Gray Rock Rock Rock Rock Rock

In order to keep as much material intact as possible for additional testing, pieces tested ranged in weight from 30g to 70g rather than 40g to 60g as called from by the spec.

	NAT	URAL MOISTUR	E CONTENT OF	SAMPLE:							
DrumNo.	1	2	1	2	1						
Drum wt. (g)	1741.9	1722.1	1741.9	1722.1	1741.9						
Total wet wt. (g)	2263	2234.1	2246.9	2236.5	2227.4						
Total dry wt (g)	2166.2	2121.7	2155.8	2160.2	2155.5						
Natural % H2O	22.8	28.1	22.0	17.4	17.4						
_		C	ycle # 1								
Beginning H2O Temp (°C)	21.8	21.8	22	22	21.6						
Ending H2O Temp (°C)	21.8	21.8	22.0	22.0	21.6						
Average H2O Temp (°C)	21.8	21.8	22.0	22.0	21.6						
Drum & Dry Rock (g)	2141.0	2112.2	2118.4	1722.5	1742.7						
		C	ycle # 2								
Beginning H2O Temp (°C)	21.9	21.9	22.4	22.4	22.0						
Ending H2O Temp (°C)	21.9	21.9	22.4	22.4	22.0						
Average H2O Temp (°C)	21.9	21.9	22.4	22.4	22.0						
Drum & Dry Rock (g)	2102.7	2104.0	2036.9	1722.1	1742.0						
SLAKE DURABILITY INDEX (percent retained after second cycle)	85.0	95.6	71.3	0.0	0.0						
Standard Verbal Description and comments (Type I - Retained pieces remain virtually unchanged) (Type II - Retained material consists of large & small pieces. (Type III - Retained material is exclusively small fragments)	Type II	Type II	Type II	Type III	Type III						

CTL Job No: 823-010 Project No.: 5128 T2.021

	Client: GRI Date: <u>2/21/2017</u>									
Project Name:	Port of Coos Ba	ay Channel Mod	ification Project	Ву:	PJ					
Boring:	UB-1	UB-2	UB-2	UB-3						
Sample:	R-1	R-3	R-7	R-3						
Depth, ft:		50	72	35						
Soil Description:	Olive Brown Rock	Gray Rock	Gray Rock	Gray Rock						
	rtook									
NATURAL MOISTURE CONTENT OF SAMPLE:										
DrumNo.	#2	#1	#1	#2						
Drum wt. (g)		1741.6	1741.6	1721.7						
Total wet wt. (g)		2244.3	2230.5	2225.3						
Total dry wt (g)	2127.5	2172.9	2163.2	2147.2						
Natural % H2O	17.8	16.6	16.0	18.4						
		C	/cle # 1							
Beginning H2O Temp (°C)	19.3	19.3	20.1	20.1						
Ending H2O Temp (°C)	19.4	19.4	20.3	20.3						
Average H2O Temp (°C)	19.4	19.4	20.2	20.2						
Drum & Dry Rock (g)	1722.3	1885.1	2022.6	1721.9						
		Cy	/cle # 2							
Beginning H2O Temp (°C)	19.7	19.7	20.3	20.3						
Ending H2O Temp (°C)	19.7	19.7	20.4	20.4						
Average H2O Temp (°C)	19.7	19.7	20.4	20.4						
Drum & Dry Rock (g)	1722.2	1778.9	1920.1	1721.7						
SLAKE DURABILITY INDEX										
(percent retained after	0.1	8.6	42.3	0.0						
second cycle)										
Standard Verbal Description and										
comments (Type I - Retained pieces										
remain virtually unchanged)	Type III	Type II	Type II	Type III						
(Type II - Retained material	i ype iii	i ype ii	ו אַרְכּ וו	ı ype iii						
consists of large & small pieces.										
(Type III - Retained material is exclusively small fragments)										
is exclusively silial liagilicitis)										

Client: Cooper Testing Lab, Inc.

Job: #376-1 Port of Coos Bay Channel Modification CTL#823-008

Sample ID	Depth (ft)	Sample Description	Point Hardness (RC)		Width 1mm)	Cerchar Index
B-15	5.5'	Light gray med gained sandstone (quite hard)	41.9	2.4	2.0	2,3
	3 .			2.5	2,5	
B-23	11.5'	Dark gray claystone	41.9	0	0	0.1
		*		0.4	0.1	
B-24	111	Dark gray silty Fire grained sounds tome (Fairly week)	41:9	03	0.3	0.2
			sample >>	0.3	0.2	
B-25	15'	Dark year med, grained sandstone (Fairly week)	41.9 Sample	0,0	0	NA (.2)
			yroke	· was		
B-26	/3′	Dark gray med grained sandstone (Fairly weak)	41.9	70.2	0,2	WA (.2)
			Sample	-	-	
L.						

2 East Point Rd. Swans Island, ME 04685

(207)812-8911

www.geotestunlimited.com abro.gtu@gmail.com

Client: Cooper Testing Lab, Inc.

Job: #376-1 Port of Coos Bay Channel Modification CTL#823-008

Date: 9/14/16
Technician: <u>A. Bro</u>

Sample ID	Depth (ft)	Sample Description	Point Hardness (RC)		r Width .1mm)	Cerchar Index
B-27	16	Dark gray siltstone	41.9	0.3	0.3	0.4
		0		0,3	0,4	
				0.5	0.5	
				0.3	0.4	
				0,5	0,5	
D-28	15'	Darle you clayey siltstone.	41.9	0.3	0,5	0.3
		8 0		0,2	0.3	
				0.5	0.3	
				0.3	0.2	
				0.4	0.3	
B-29	12'	Dark gray clargey 5'1+5+one	41.9	0.2	0.3	0.4
				0,4	0,5	
				0.4	0.3	
				0.4	0.3	
			A01.	0,4	0.4	
B-20	28'	Dank your Fine grained sands tome	41.9	0.5	0.4	NA (0.5)
		(weak rock)		0.5	0.5	
			5	0	0	
		Samp	2	la d'a		
		500				
B-31	14'	Dark gray fine grained sandstone	41.9	0,4	0.3	0.4
		(weak rock)		0.4	0.3	
				0.4	0.4	
				0.3	6.4	
				0.3	0.5	

2 East Point Rd. Swans Island, ME 04685

(207)812-8911

www.geotestunlimited.com abro.gtu@gmail.com

Client: Cooper Testing Lab, Inc.

Job: #376-1 Port of Coos Bay Channel Modification CTL#823-008

Date: <u>9/14/16</u> Technician: <u>A. Bro</u>

Sample ID	Depth (ft)	Sample Description	Point Hardness (RC)		Width 1mm)	Cerchar Index
B-32	8.5	Dash gray five grained sandstone	41.9	0,4	0,5	0.3
		7	*	0.2	0,2	
			3 2 2	0.4	0.4	1, 4, 10
				0.3	0.3	
			-	0,4	0.3	
B-33	2	Dark gray silty Fine grained	41.9	0.2	0.3	0.3
		Sandstone		0.4	0.5	
				0.3	0.4	
				0.4	0,3	
			T	0.4	0.1	
B-40	11	Dark grow Fine to med grained	41.9	0.4	0.5	0.4
		Jan Cs trule		0.4	0.4	
				0.4	0.5	
				0,1	0,4	
			41.0	0.4	0,4	
			41.9			
				-704		
			41.9			
			41.9			
			-			
31						
L				-		

2 East Point Rd. Swans Island, ME 04685

(207)812-8911

www.geotestunlimited.com abro.gtu@gmail.com

Client: Cooper Testing Lab, Inc.

Job: #378-1 Port of Coos Bay Channel Modification Project – Cooper Proj. # 5128 T2.021

2 East Point Rd. Swans Island, ME 04685

Date: <u>2//5//7</u> Sechnician: A. Bro

www.geotestunlimited.com abro.gtu@gmail.com

Sample ID	Depth (ft)	Sample Description	Point Hardness (RC)	10000	r Width 0.1mm)	Cerchar Index
UB-1	60'	Darkgran Silty Fine grained Sound Store - weak & Fractured	41.9 Samples	0.7	0,4 6,4 0.4	,4 ×
UB-2	72'	Dark gray Silty Fine grained stands tome weak	41.9	0,4	0.4	.4 *
UB-3	30.3'	Dark gray Silty Fine grained sandstone	41.9	0.4	0,5	-4
			41.9			
, e		* Average of the 6 measurements so pe as the overage of 10 measurements poss had not broken.	thaps is	the s	acur	ate

(207)812-8911

Location: Coos Bay, OR Project No: GTX-318386

752545

Boring ID: B-4-23 Sample Type: cylinder Tested By: te Sample ID: R-2 Test Date: 01/11/24 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

31.9-32.3'

Depth:

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
B-4-23	R-2	31.9-32.3 ft	1	0.1	0.3	0.20	
			2	0.1	0.3	0.20	
			3	0.2	0.1	0.15	
			4	0.5	0.4	0.45	
			5	0.1	0.3	0.20	
				Average CAIs		0.24	
				Average CAI *		0.72	

CERCHAR Abrasiveness Index Classification

Low abrasiveness

Notes

Test Surface: Saw Cut
Moisture Condition: As Received
Apparatus Type: Original CERCHAR

Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel

* CAI = (0.99 * CAIs) + 0.48

CAIs = CERCHAR index for smooth (saw cut) surface

CAI = CERCHAR index for natural surface

Location: Coos Bay, OR Project No: GTX-318386

Boring ID: B-13-23 Sample Type: cylinder Tested By: te Sample ID: R-2 Test Date: 01/11/24 Checked By: smd Depth: 20.8-21.1' Test Id: 752546

Test Comment: --Visual Description: --Sample Comment: ---

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
B-13-23	R-2	20.8-21.1 ft	1	0.2	0.3	0.25	
			2	0.3	0.4	0.35	
			3	0.1	0.1	0.10	
			4	0.3	0.2	0.25	
			5	0.2	0.1	0.15	
				Average CAIs		0.22	
				Average CAI *		0.70	

CERCHAR Abrasiveness Index Classification

Low abrasiveness

Notes

Test Surface: Saw Cut
Moisture Condition: As Received
Apparatus Type: Original CERCHAR

Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel

* CAI = (0.99 * CAIs) + 0.48

CAIs = CERCHAR index for smooth (saw cut) surface

CAI = CERCHAR index for natural surface

Coos Bay, OR Project No: GTX-318386 Location:

Boring ID: B-14-23 Sample Type: cylinder Tested By: te Sample ID: R-5 Checked By: smd Test Date: 01/11/24 Test Id: 752547

Test Comment: Visual Description: Sample Comment:

7.4-7.8'

Depth:

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
B-14-23	R-5	7.4-7.8 ft	1	0.4	0.3	0.35	
			2	0.3	0.2	0.25	
			3	0.4	0.3	0.35	
			4	0.5	0.5	0.50	
			5	0.3	0.2	0.25	
				Average CAIs		0.34	
				Average CAI *		0.82	

CERCHAR Abrasiveness Index Classification

Low abrasiveness

Notes

Test Surface: Saw Cut Moisture Condition: As Received Original CERCHAR Apparatus Type:

Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel

* CAI = (0.99 * CAIs) + 0.48

CAIs = CERCHAR index for smooth (saw cut) surface

CAI = CERCHAR index for natural surface

Location: Coos Bay, OR Project No: GTX-318386

755122

Boring ID: B-14-23 Sample Type: cylinder Tested By: jss Sample ID: R-6 Test Date: 01/19/24 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

11.6'-12.1'

Depth:

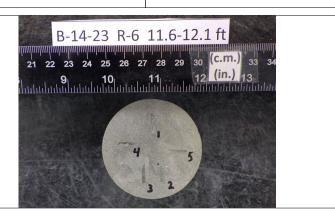
Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
B-14-23	R-6	11.6-12.1 ft	1	0.4	0.5	0.45	
			2	0.3	0.3	0.30	
			3	0.2	0.2	0.20	
			4	0.1	0.1	0.10	
			5	0.1	0.3	0.20	
				Average CAIs		0.25	
				Average CAI *		0.73	

CERCHAR Abrasiveness Index Classification

Low abrasiveness

Notes


Test Surface: Saw Cut
Moisture Condition: As Received
Apparatus Type: Original CERCHAR

Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel

* CAI = (0.99 * CAIs) + 0.48

CAIs = CERCHAR index for smooth (saw cut) surface

CAI = CERCHAR index for natural surface

Location: Coos Bay, OR Project No: GTX-318386

752548

Boring ID: B-14-23 Sample Type: cylinder Tested By: te Sample ID: R-7 Test Date: 01/11/24 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

19.5-19.8'

Depth:

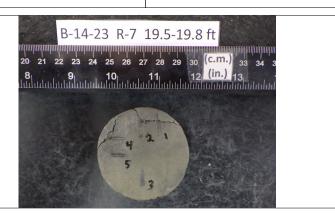
Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
B-14-23	R-7	19.5-19.8 ft	1	0.2	0.1	0.15	
			2	0.2	0.3	0.25	
			3	0.2	0.1	0.15	
			4	0.4	0.3	0.35	
			5	0.1	0.2	0.15	
				Average CAIs		0.21	
				Average CAI *		0.69	

CERCHAR Abrasiveness Index Classification

Low abrasiveness

Notes


Test Surface: Saw Cut
Moisture Condition: As Received
Apparatus Type: Original CERCHAR

Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel

* CAI = (0.99 * CAIs) + 0.48

CAIs = CERCHAR index for smooth (saw cut) surface CAI = CERCHAR index for natural surface

CAI - CERCHAR IIIUEX IOI IIaturai Suriace

Location: Coos Bay, OR Project No: GTX-318386

752549

Boring ID: B-15-23 Sample Type: cylinder Tested By: te Sample ID: R-3 Test Date: 01/11/24 Checked By: smd

Test Id:

Test Comment: --Visual Description: --Sample Comment: ---

12.5-12.9'

Depth:

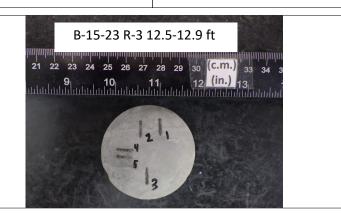
Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

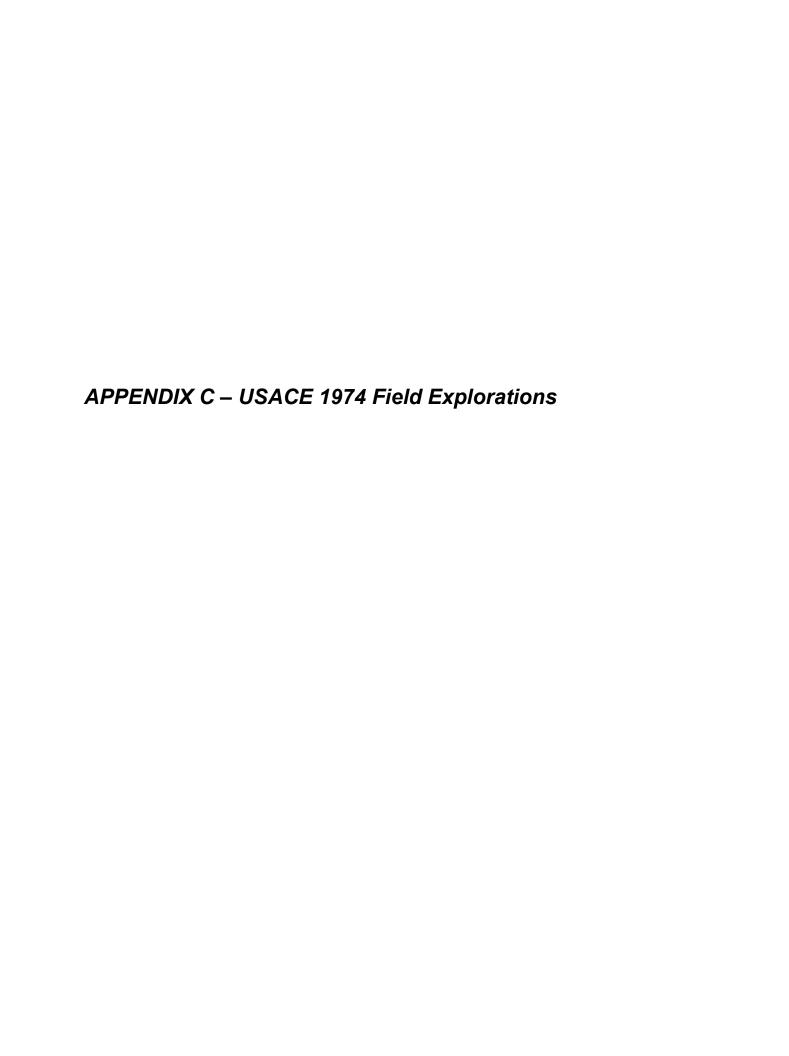
Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments
B-15-23	R-3	12.5-12.9 ft	1	0.2	0.1	0.15	
			2	0.4	0.4	0.40	
			3	0.1	0.2	0.15	
			4	0.1	0.1	0.10	
			5	0.1	0.1	0.10	
				Average CAIs		0.18	
				Average CAI *		0.66	

CERCHAR Abrasiveness Index Classification

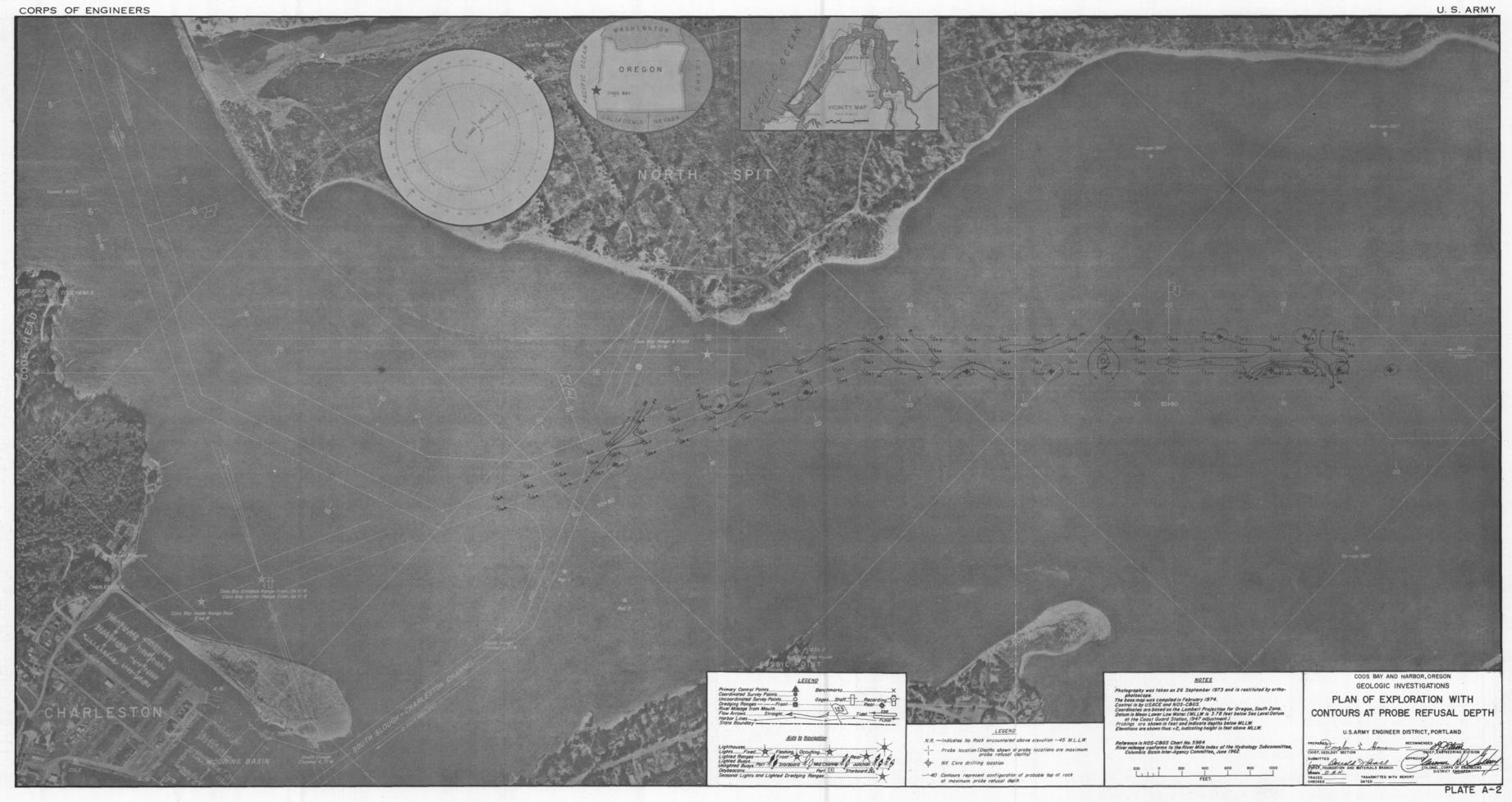
Low abrasiveness

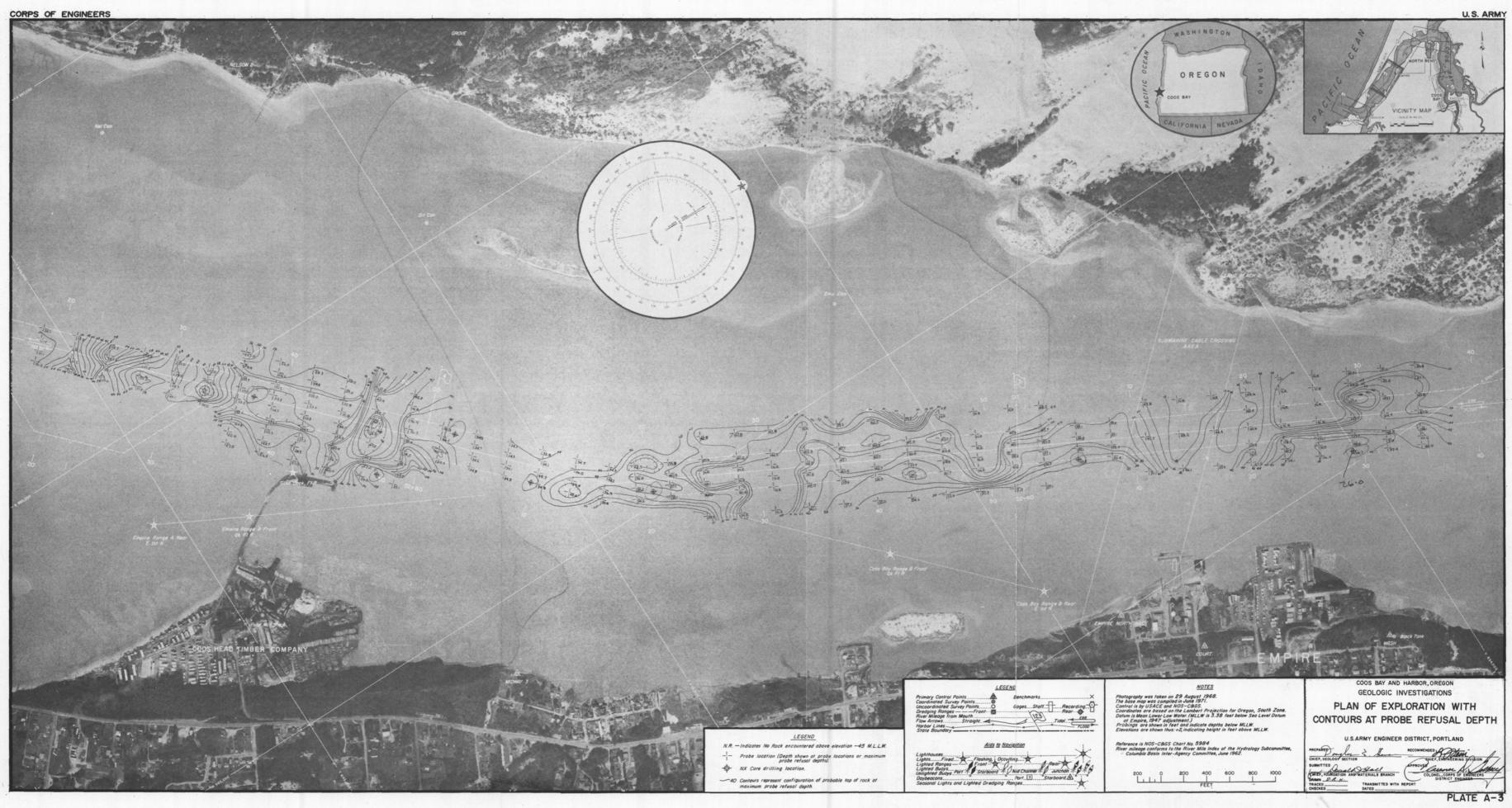
Notes

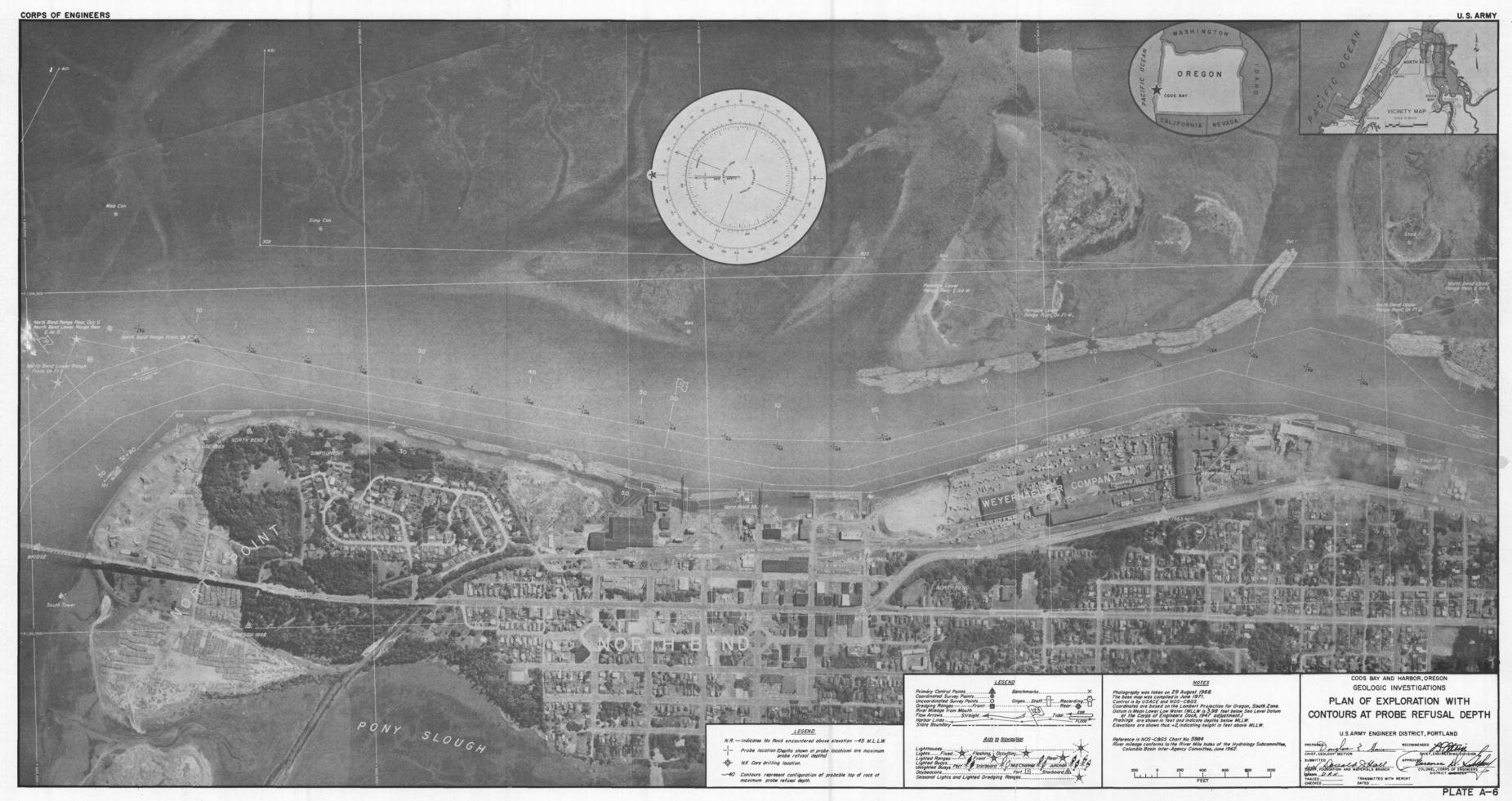

Test Surface: Saw Cut
Moisture Condition: As Received
Apparatus Type: Original CERCHAR

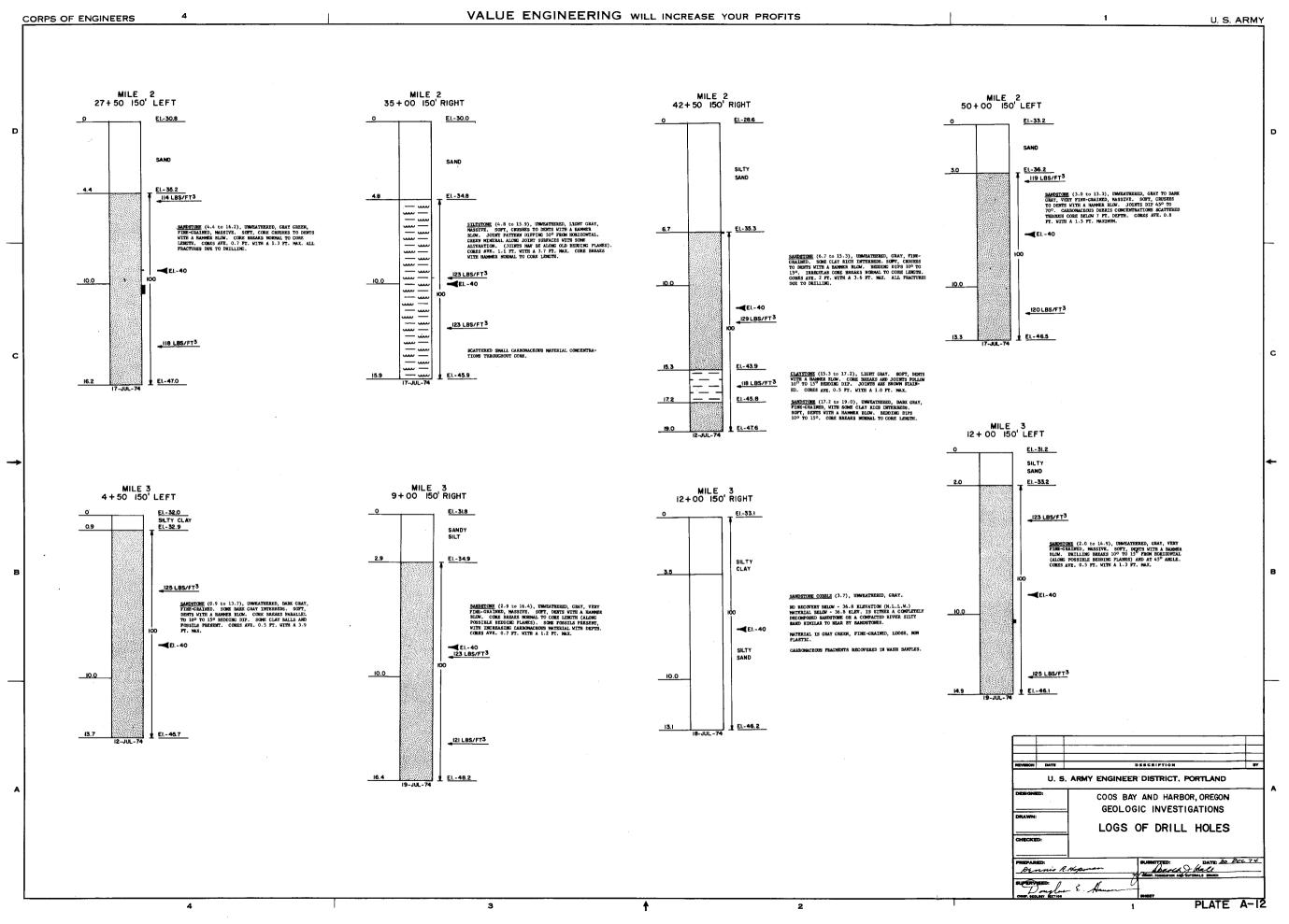

Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel

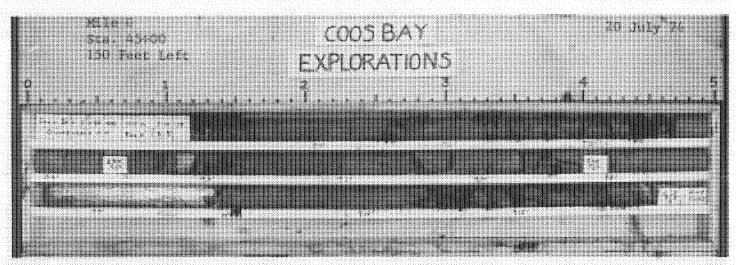
* CAI = (0.99 * CAIs) + 0.48

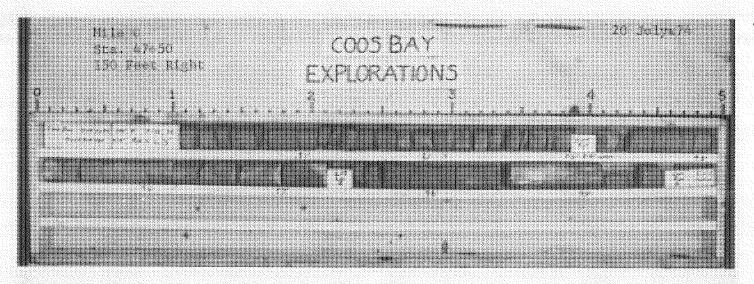

CAIs = CERCHAR index for smooth (saw cut) surface

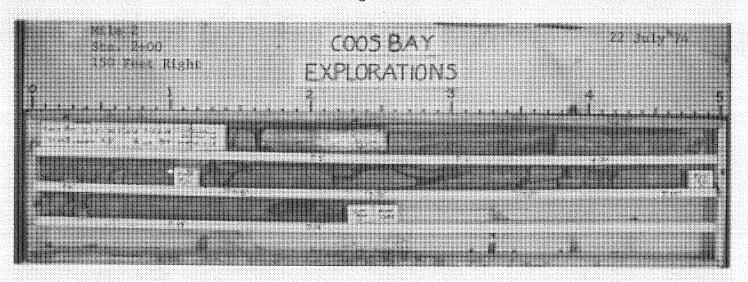

CAI = CERCHAR index for natural surface

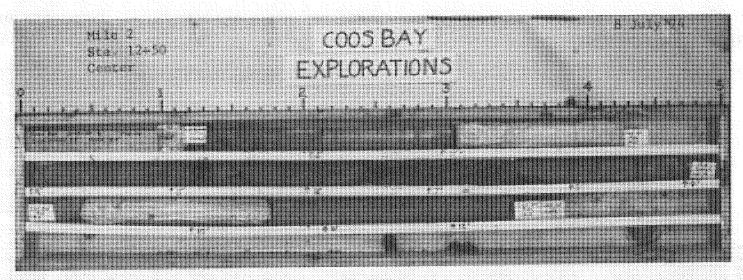


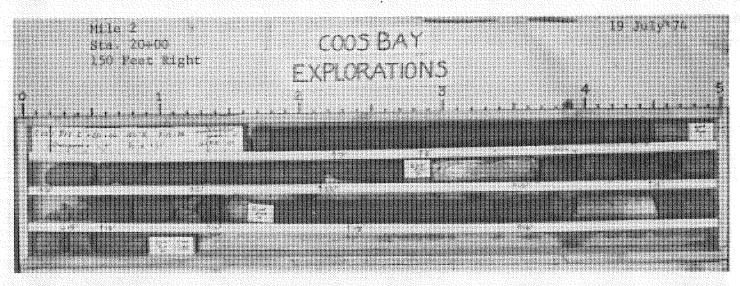


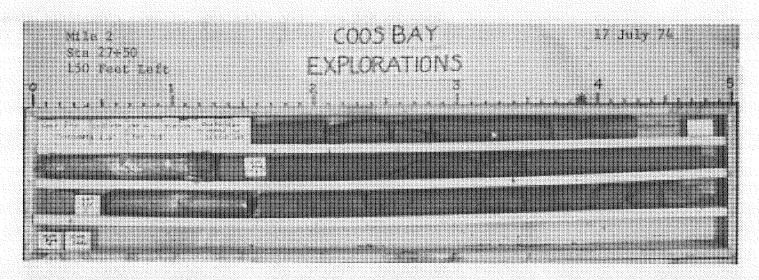


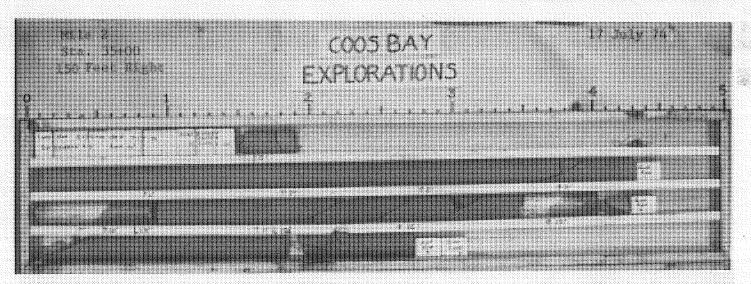


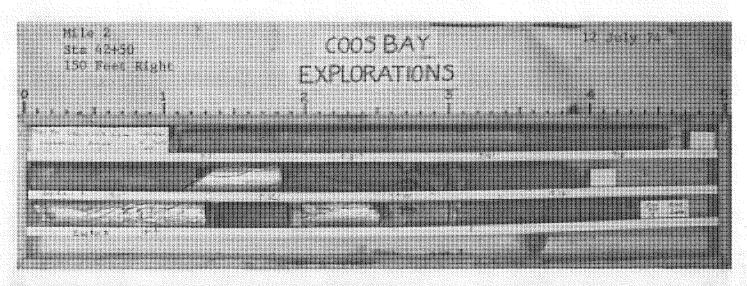

COOS BAY BORING MILE 0 STA. 42+00 150 FEET RIGHT. Sandstone. Top of rock elevation: -32.9, bottom of hole elevation: -45.9. See Plate A-11 for log of core. Note* White pieces shown are core which has been wrapped in aluminum foil and waxed for preservation.

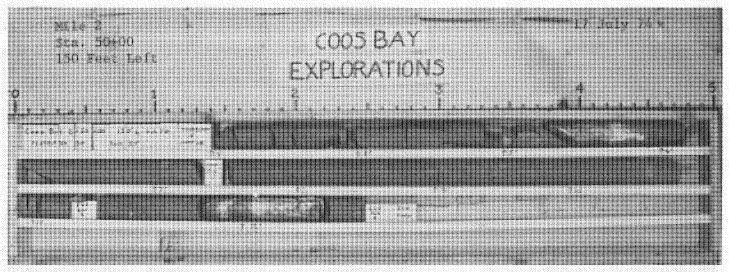

COOS BAY BORING MILE 0 STA. 45+00 150 FEET LEFT. Sandstone. Top of rock elevation: -32.7, bottom of hole elevation: -45.6. See Plate A-11 for log of core.


COOS BAY BORING MILE 0 STA. 47+50 150 FEET RIGHT. Sandstone. Top of rock elevation: -33.1, bottom of hole elevation: -44.4. See Plate A-11 for log of core.

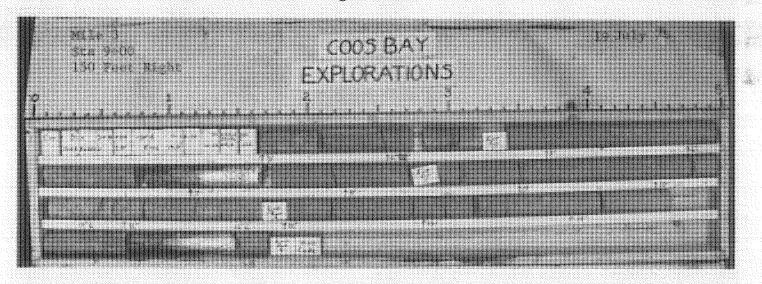

COOS BAY BORING MILE 2 STA. 2+00 150 FEET RIGHT. Claystone. Top of rock elevation: -36.3, bottom of hole elevation: -46.0. See Plate A-11 for log of core.

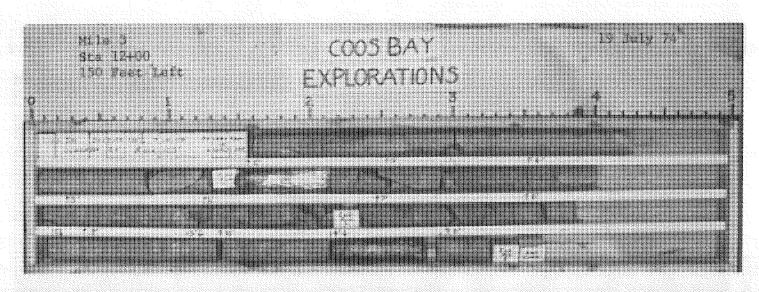

COOS BAY BORING MILE 2 STA. 12+50 CENTERLINE. Sandstone. Top of rock elevation: -34.5, bottom of hole elevation: -45.9. See Plate A-11 For log of core.

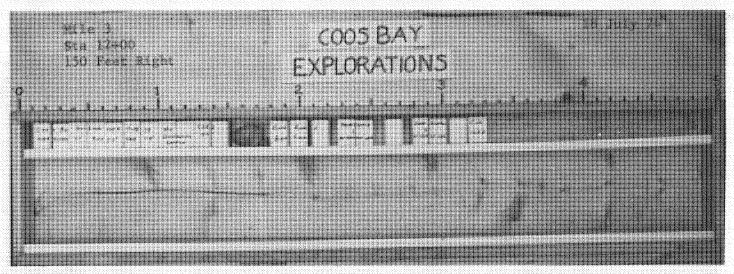

COOS BAY BORING MILE 2 STA. 20+00 150 FEET RIGHT. Sandstone. Top of rock elevation: -34.0, bottom of hole elevation: -47.1. See Plate A-11 for log of core.

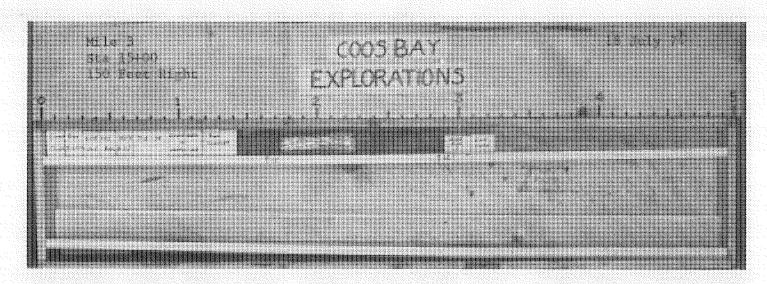

COOS BAY BORING MILE 2 STA. 27+50 150 FEET LEFT. Sandstone. Top of rock elevation: -35.2, bottom of hole elevation: -47.0. See Plate A-12 for log of core.

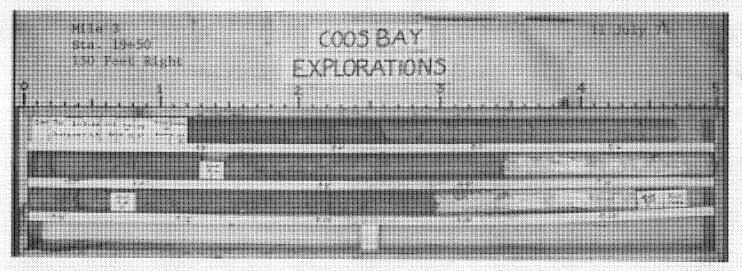
COOS BAY BORING MILE 2 STA. 35+00 150 FEET RIGHT. Siltstone. Top of rock elevation: -34.8, bottom of hole elevation: -45.9. See Plate A-12 for log of core.


COOS BAY BORING MILE 2 STA. 42+50 150 FEET RIGHT. Sandstone. Top of rock elevation -35.3 to -43.9; Claystone: elevation -43.9 to -45.8; Sandstone: elevation -45.8 to bottom of hole elevation -47.6. See Plate A-12 for log of core.

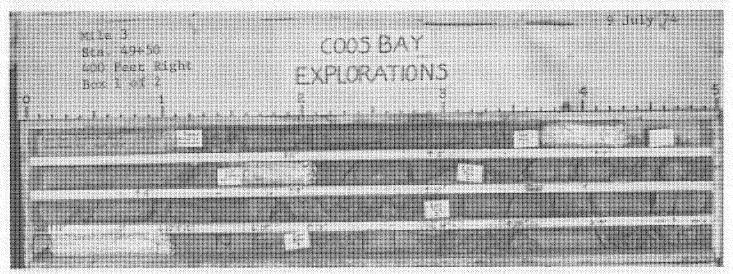

COOS BAY BORING MILE 2 STA. 50+00 150 FEET LEFT. Siltstone. Top of rock elevation: -36.2, bottom of hole elevation: -46.5. See Plate A-12 for log of core.


COOS BAY BORING MILE 3 STA. 4+50 150 FEET LEFT. Sandstone. Top of rock elevation: -32.9, bottom of hole elevation: -45.7. See Plate A-12 for log of core.


COOS BAY BORING MILE 3 STA. 9+00 150 FEET RIGHT. Siltstone. Top of rock elevation: -34.7, bottom of hole elevation: -48.2. See Plate A-12 for log of core.

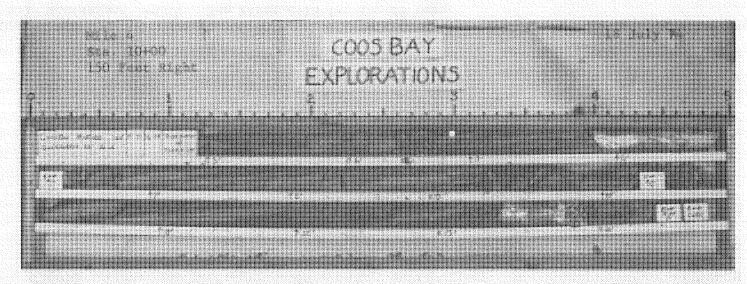

of hole elevation: -46.1. See Plate A-12 for log of core. Top of rock elevation: -33.2, bottom

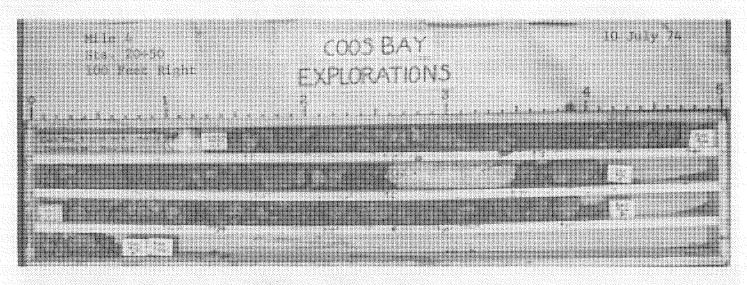
COOS BAY BORING MILE 3 STA. 12+00 150 FEET RIGHT. Sandstone Cobble. Elevation -36.8, bottom of hole elevation: -46.2. See Plate A-12 for log of material.

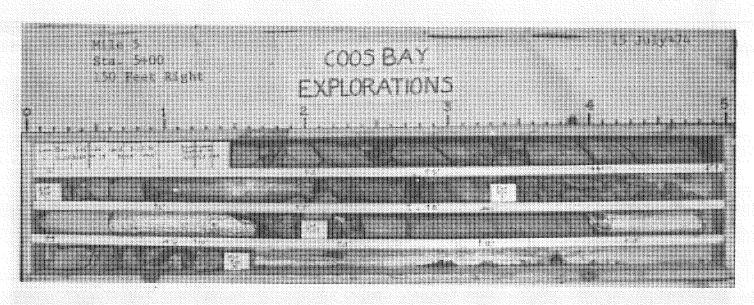

COOS BAY BORING MILE 3 STA. 15+00 150 FEET RIGHT. Sandstone. (top of known rock) Elevation -43.6, bottom of hole elevation: -45.1. See Plate A-13 for log of core.

COOS BAY BORING MILE 3 STA. 19+50 150 FEET RIGHT. Sandstone. Top of rock elevation: -35.1, bottom of hole elevation: -48.5. See Plate A-13 for log of material.


COOS BAY BORING MILE 3 STA. 37+50 CENTERLINE. <u>Sandstone</u>. Top of rock elevation: -34.9, bottom of hole elevation: -45.5. See Plate A-13 for log of material.

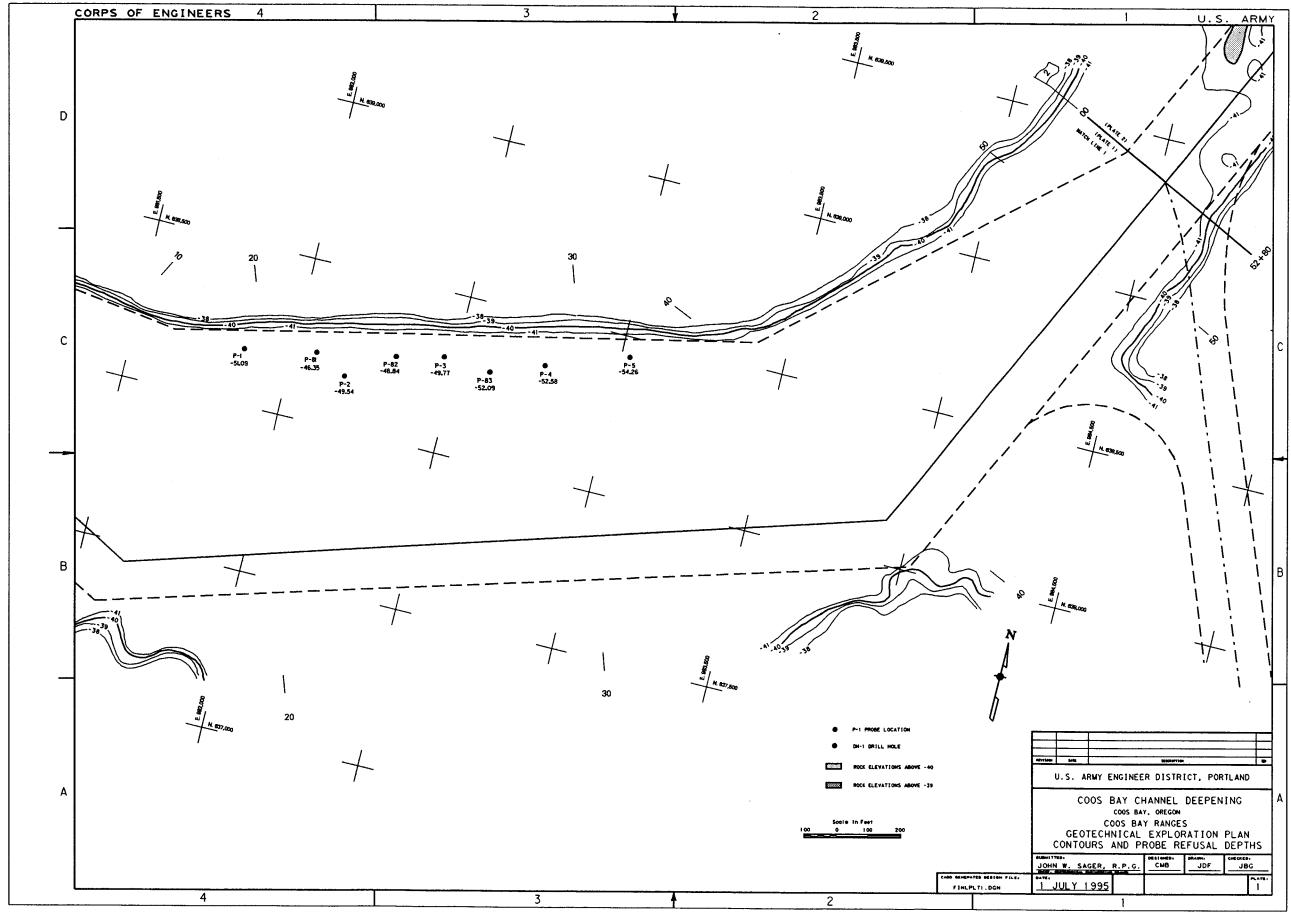

COOS BAY BORING MILE 3 STA. 49+50 400 FEET RIGHT. Claystone. Top of rock elevation: -26.7, bottom of hole elevation: -47.0. See Plate A-13 for log of core.

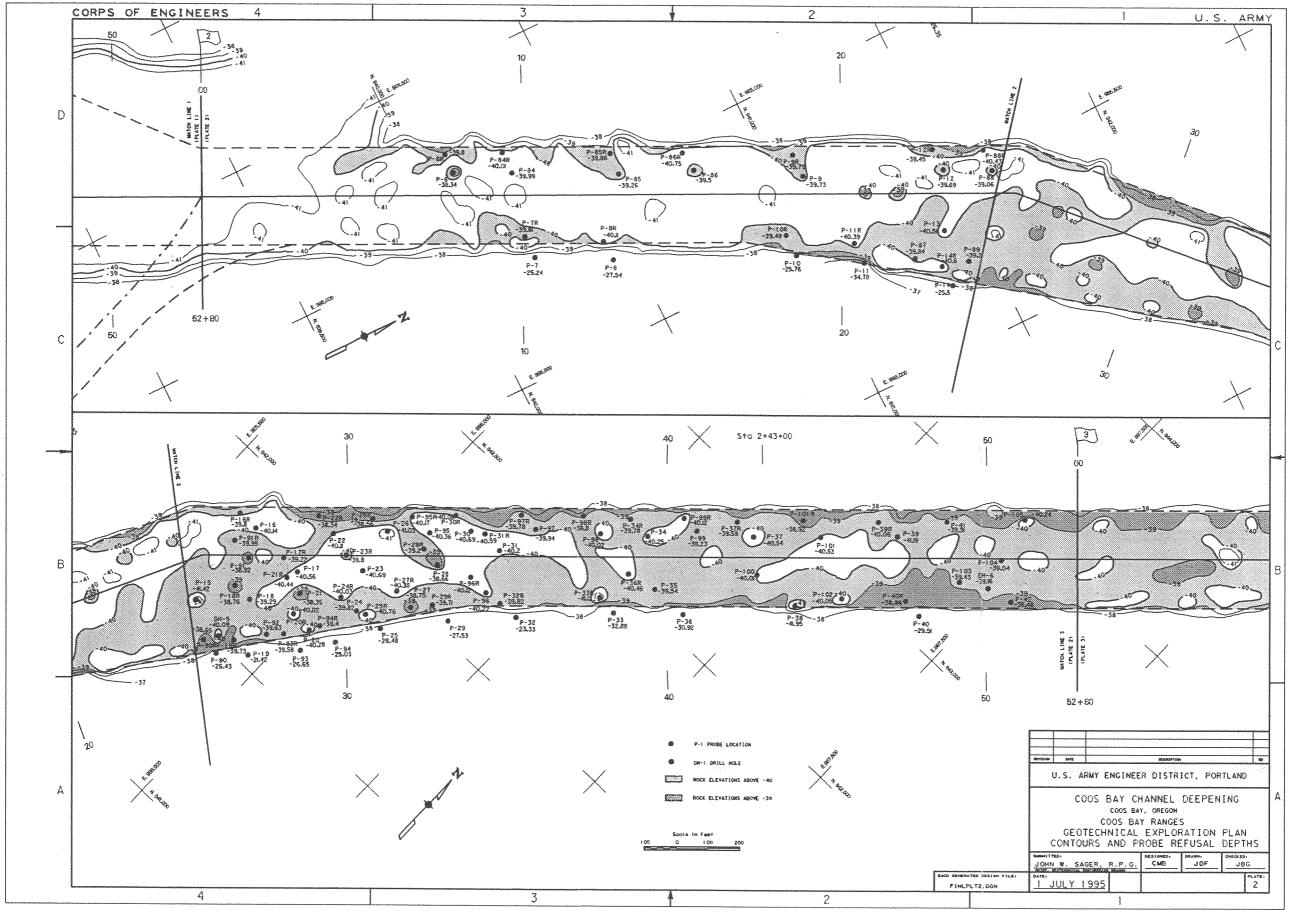

COOS BAY BORING MILE 3 STA. 49+50 400 FEET RIGHT. Claystone. Top of rock elevation: -26.7, bottom of hole elevation: -47.0. See Plate A-13 for log of core.

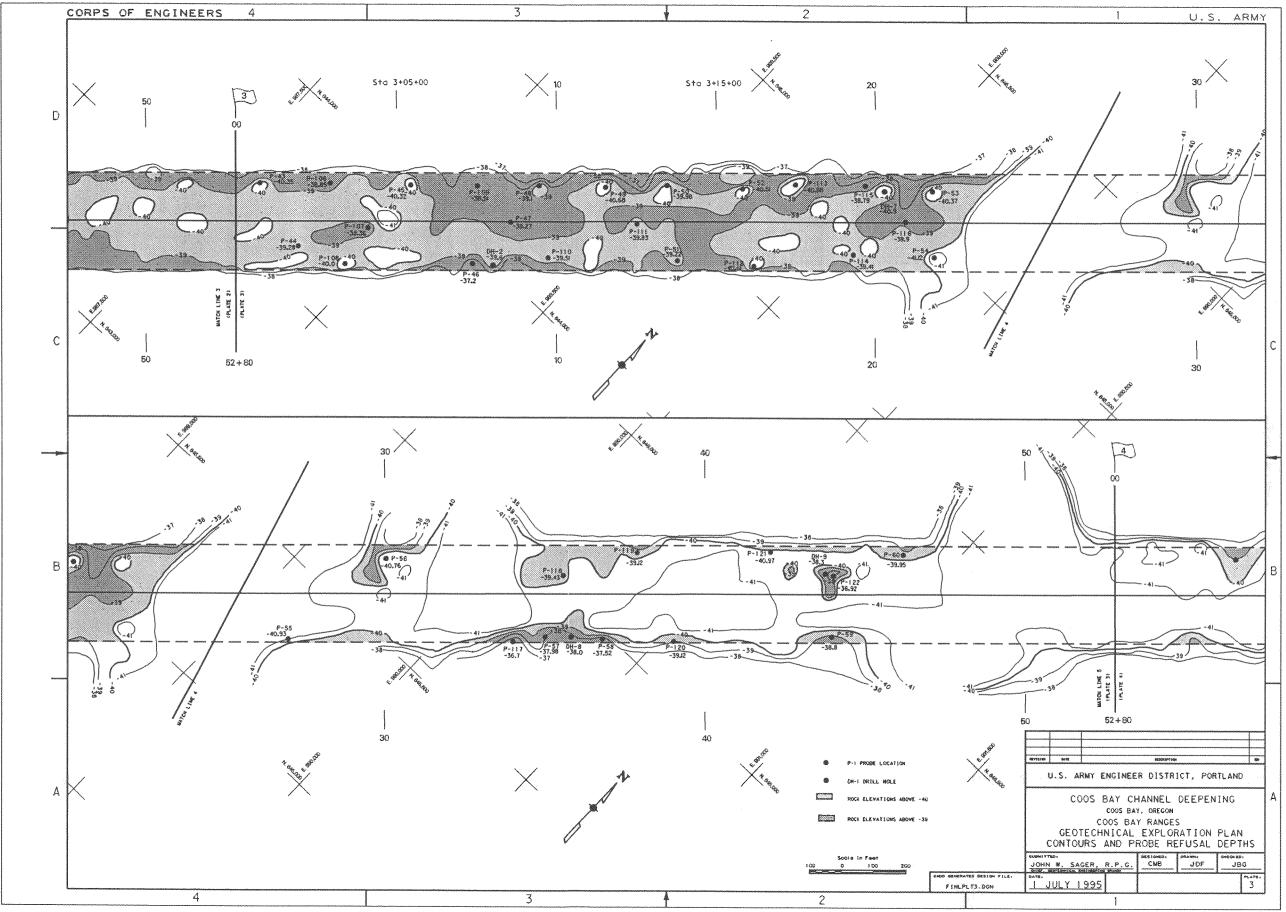

COOS BAY BORING MILE 4 STA. 2+50 100 FEET LEFT. Claystone. Top of rock elevation -35.9 to -45.4; Siltstone: elevation -45.4 to -46.8; Claystone: elevation -46.8 to bottom of hole elevation -47.4. See Plate A-13 for log of core.

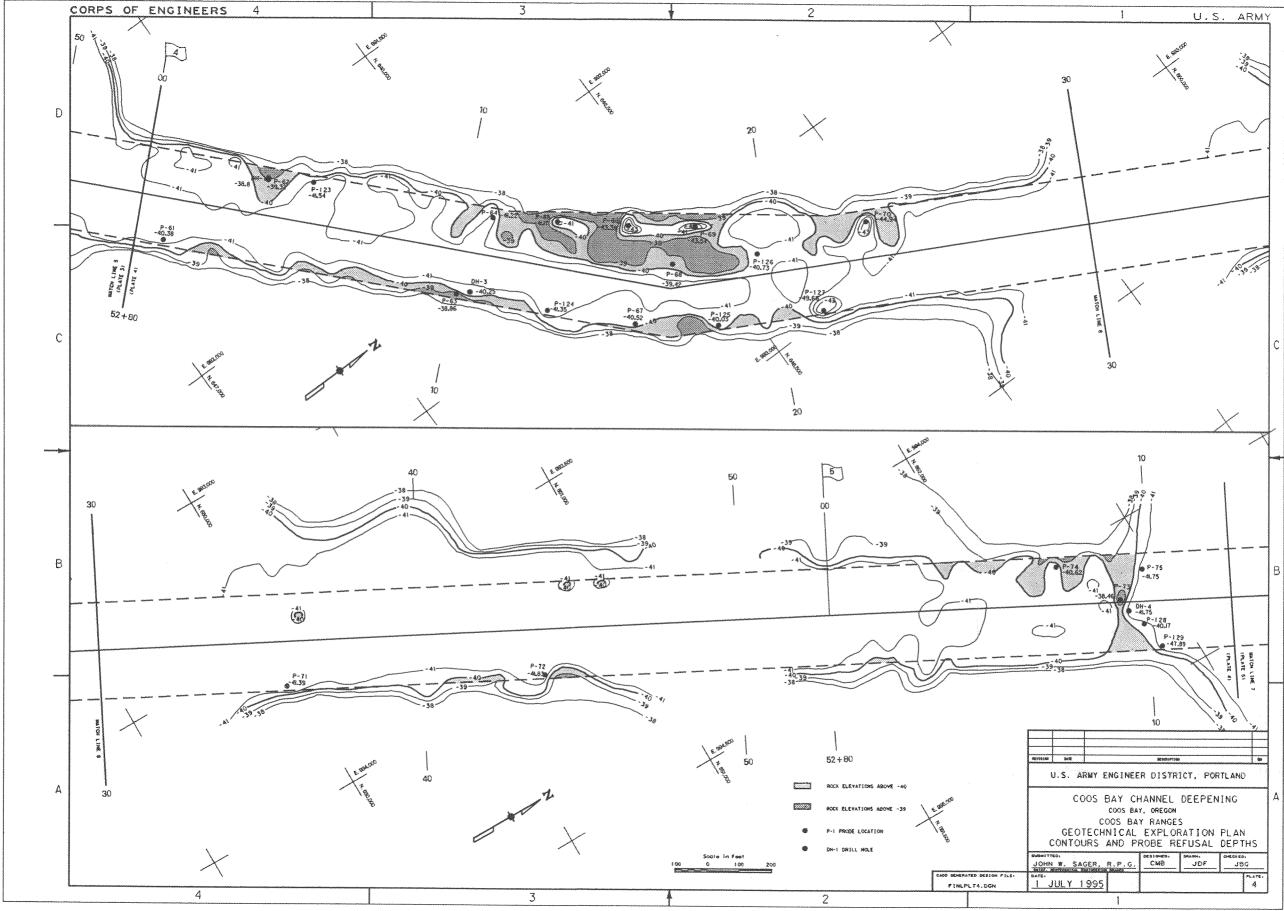
COOS BAY BORING MILE 4 STA. 10+00 150 FEET RIGHT. Claystone. Top of rock elevation: -34.2, bottom of hole elevation: -45.8. See Plate A-13 for log of core.

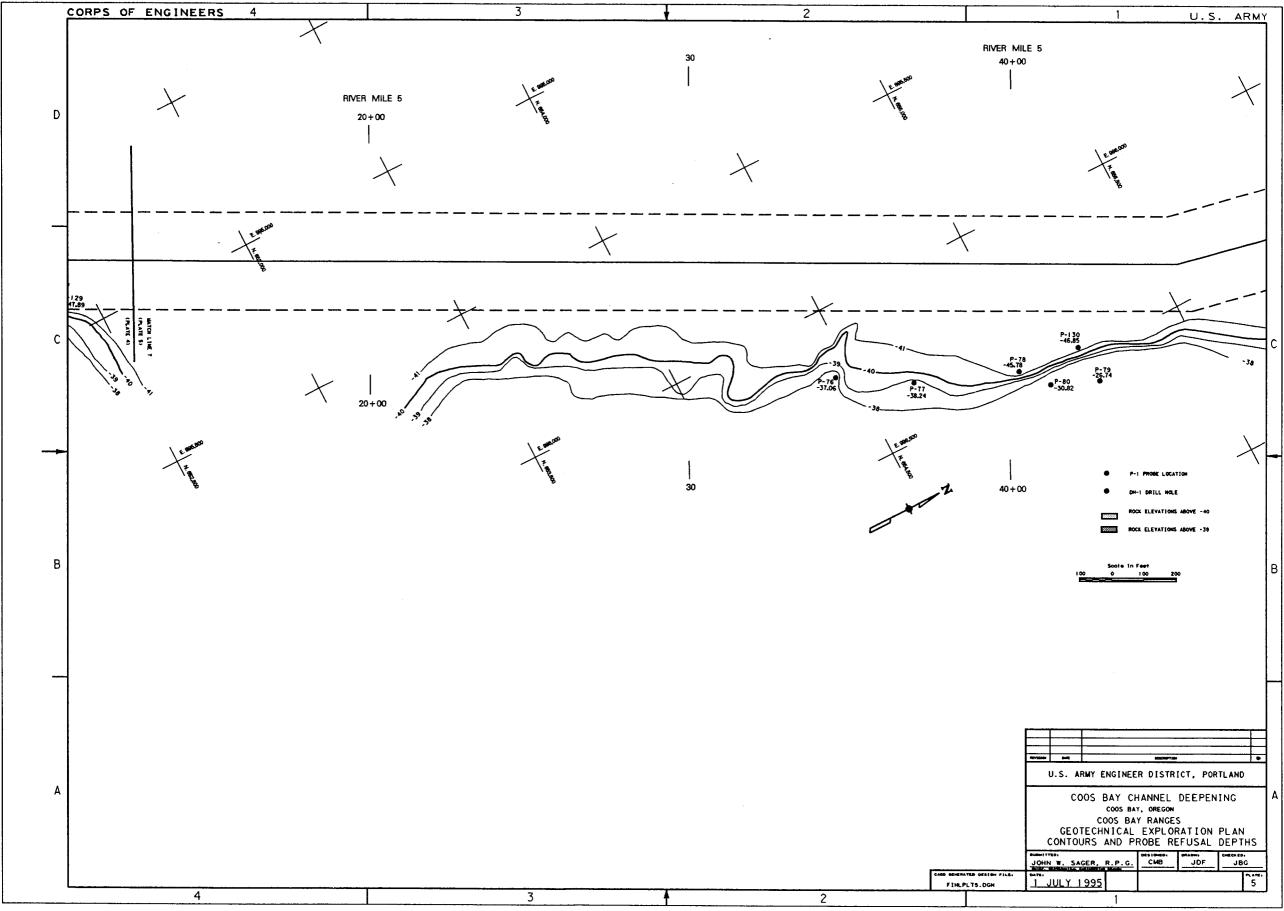
COOS BAY BORING MILE 4 STA. 20+50 100 FEET RIGHT. Claystone. Top of rock elevation: -34.7, bottom of hole elevation: -47.3. See Plate A-13 for log of core.




COOS BAY BORING MILE 5 STA. 5+00 150 FEET RIGHT. Sandstone. Top of rock elevation -32.1 to -33.2; Siltstone: elevation -33.2 to 39.4; Sandstone: elevation -39.4 to -41.8; Siltstone: -41.8 to bottom of hole elevation: -45.3. See Plate A-13 for log of core.

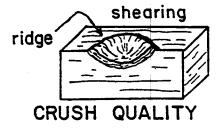


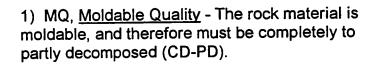

COOS BAY BORING MILE 5 STA. 29+00 300 FEET RIGHT. Claystone. Top of rock elevation: -38.1, bottom of hole elevation: -45.2. See Plate A-13 for log of core.

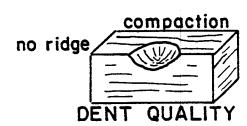

APPENDIX D – USACE 1994 Field Exploration Testing	ns and Laboratory

Appendix A

Drill Logs Core Photos

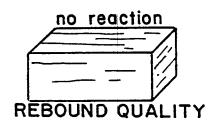

LEGEND FOR DRILL LOGS


N = NorthingE = Eastingm.l.l.w. = mean lower low water DB = drill break HB = hand break DQ, CQ = Dent quality (dents upon hammer impact); crush quality (crushes upon hammer CSG = casingCR = core recovery Percent (%) Core Recovery, D,C,L PLT = point load test EOR = end of runPD = partially decomposed TOR = top of rockMSV = massiveBOH = bottom of holeV.F. = very fine D = footage drilled C = core recoveredL = core lossS = sampleMed = mediumk = 35 pounds U_L = ultimate load in pounds PLI = point load index in psi

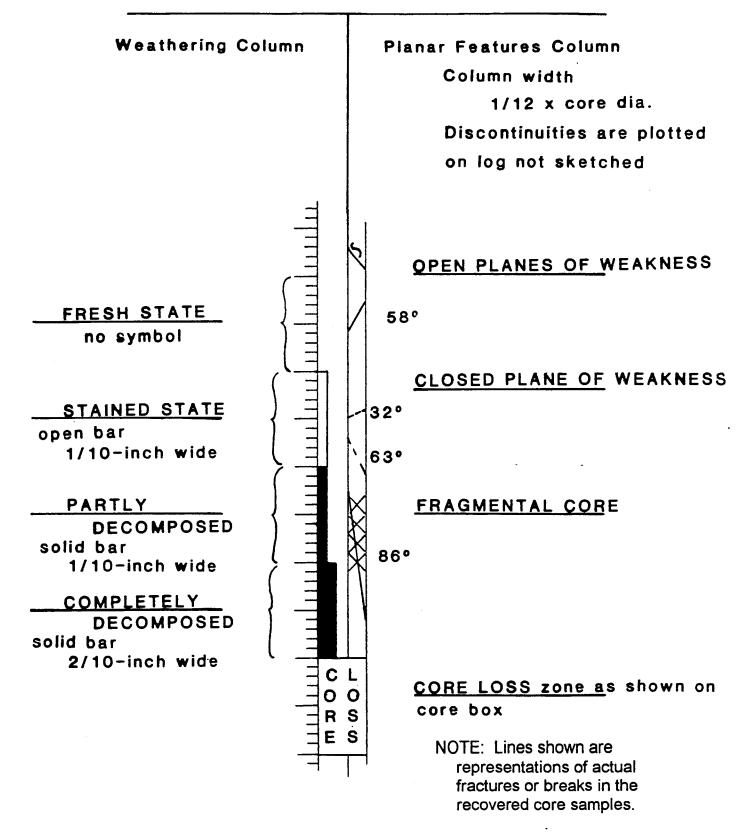

LEGEND FOR DRILL LOGS

Field Compressive Strength

Field Compressive Strength or Impact Hardness is a measure of the intact strength of the rock mass independent of planar and linear elements. There are four distinct reactions to impact loading by means of a 1 pound ball-pean hammer (or a well rounded peck end of a G-pick). The reaction is independent of intensity of blow within the limitations of the tool used and the investigator's strength. Based on these reactions plus the moldability factor, five categories of field compressive strength are denoted:



2) CQ, <u>Crush Quality</u> - A reaction under the point of impact producing a shearing and upthrusting of adjacent mineral grains.



3) DQ, <u>Dent Quality</u> - A reaction under the point of impact producing a dent or depression. It indicates the presence of "pore space" between the mineral grains.

- 4) PQ, <u>Pit Quality</u> A reaction under the point of impact producing a "Shatter Cone" and an explosive departure of mineral fragments. Results in a shallow, rough pit.
- 5) RQ, <u>Rebound Quality</u> A reaction under the point of impact in which there is no reaction by the rock.

DRILL CORE LEGEND COLUMN

							Hole No.		_
DRILI	ING LOG	Di	WORTH PACET		LATION 73	207404	התמהאבל בנ	SHEET (]
PROJECT			NOETH THESE	10. SIZ	E AND TYPE	OF BIT	NX DEAMON	O BIT	1
Lower (ocs B	I See	CHANNEL EXPL				SHOWN (TBM or MSL)		1
L LOCATION い。んん L DRILLING	7.52	E37.9	E. 991.629	12. MA	NUFACTURE		GNATION OF DRILL		1
DRILLING	AGENCY	/ مصر	Sun - Perchasterun	*CO-11.70	741 40 05	APLE/	I DISTURBED	UNDISTURBED	4
HOLE NO.	(As shows	on de dark	SUB-PETCHESDETURE DH	-/	TAL NO. OF RDEN SAMPI	LES TAKE	(N) <	φ	4
. NAME OF	DRILLER .			14. 10	TAL NUMBE				4
DIRECTIO			BALLER		EVATION GF		(T DE:	MPLETED	┨
	CAL DIN		DEG. FROM	VERT.	TE HOLE		3 Aug 94 2	23 Aug 94	4
			į .	/ U.A.S.A.	EVATION TO			77% 2	-
. DEPTH OF					HATURE OF			1-210 1	+
, TOTAL DE	PTH OF H	DLE	3.3		[4]	uff.(Dende	<u></u>	4
ELEVATION a	DEPTH L	EGEND	CLASSIFICATION OF M (Description)	ATERIALS	Z CORE/ RECOV- ERY	SAMPLE NO.	REMAI (Drilling time, water weathering, etc.,	IKS ir lose, depth of if eignificant)	
38.80	0 -	T	C.o.w		Real		O.O TOP	DE RUCK	E
-, - ']	4	DB Huz	STONES	01.4	1		, , _, <u>_</u> , _	F
	→		1	weed DO	61.4				þ
	ーキ	_	na France	ب سرستا	LCIO				E
	17	1	na Buodi	ns, Fosseller	page R.		100		E
	₹		DE SURVE	S V. FAST.	1,4	0)	Same	ar which	þ
	▎ᅼ	7-	Blocked OFF		Rusz	2	La chare	anything seven	F
	=	1			DIZ	×	No - Ik of	<i>⊷</i> ~	E
	z =		·		121.2	X051			E
					100%	1 .			þ
	=				OR.				E
	-	1	life.		2.6		Lo.1, 86%	9 <i>2.</i>	E
	\exists				Run 3		LON 0000	~	þ
	3		1 _		C 0.4	Y			Þ
-42:10	‡		EL. LOR-BOY	1.	3.3	3.3			ŧ
	\exists		How Bortome						ŧ
	\exists		STRONG CURRE	wr(7 in 40	sol vc.		1		þ
	4		Tabe) Steams Con Caustany 2-21/2	الما كاومكرات	F PD				E
			CALATENS 2-2/2	eff chop					E
			(16 KNOTS- CAPOT	bear L.H.					þ
	=		SUITED THE !	BARGUET			1		E
	_ =		AND SHEPTED T	THU-C36u					E
	5 3		[þ
	=						<u> </u>		þ
									E
	7		İ						E
	6 ∃		:						þ
	=				1		1		F
	니크] .						E
									E
	123		1						þ
	=								þ
			1						E
	日								E
	E						1		þ
	8						1		þ
			· ·			ł			E
	크								þ
	E					1			þ
	9 =		!						ŀ
						1			E
	=								-
	. —		l			1			£
]						i .		
-48.80	[,,]								ŀ

A-4

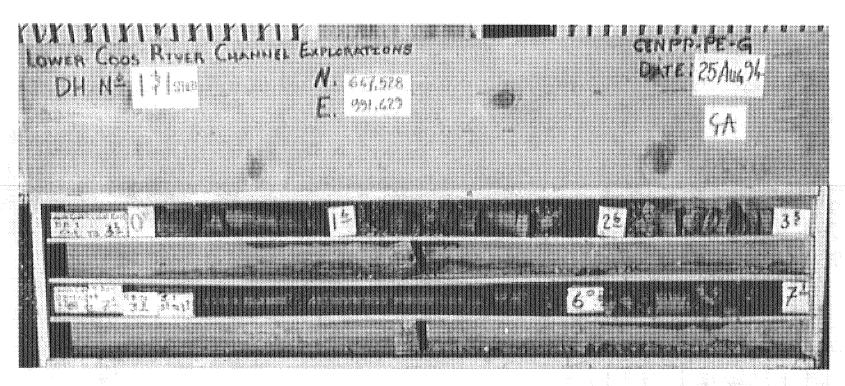
									Hole No. DH-1 STU	<u> </u>
DRIL	LING LO		IVISION	DRTH PACTURE	INSTALI		7-14		DESTRECT OF Z SHEETS	
1. PROJECT					10. SIZE				NX - PETALLOND BET	1
LOWER	Coos	Buley	<u>Cu</u>	ANNOR EXPL	11. DAT	UM FOR EI			SHOWN (TBM or MSL)	7
D. 64	17,52	& ,	E 9	191,629	12. MAN	UFACTUR			GNATION OF DRILL	-{
3. DRILLING	AGENCY	/	S /	Frence Deregyala			FA	L.T.	wa 1500	_1
4. HOLE'NO	· (As show	m on Aran	ing title		13. TOT	AL NO. OF DEN SAMP	OVE	R- Take	IN CONTURBED UNDISTURBED	1
S. NAME OF			i	DH-1	14. TOT	AL NUMBE	R CO	RE E	······································	7
S. HAME OF	DRILLER	Bas	BALLE	al Barba	15. ELE	VATION G	ROUN	D WA	ITER (JDC	1
6. DIRECTIO					IS. DAT	E HOLE		STA	Aucz 94 Z3 Aug 94	7
VERT	EVE []	INCLINE		DEG. FROM VERT.	17. ELE	VATION TO	OP OF	•	CK - 38,80	┨
7. THICKNE				-10:3					Y FOR BORING 100% 3	
S. DEPTH D			<u> </u>			ATURE OF			OR	1
·	T			LASSIFICATION OF MATERIA		% CORE	BOX	OR	REMARKS	-
ELEVATION	DEPTH	LEGEND	1	(Description)	-		BOX SAMI	PLE O.	(Drilling time, water lose, depth of weathering, etc., if significant)	
-38.80	D -	-	-	•		-	<u> </u>		0.0 TOP OF ROCK	士
70.60	1 =	100%		MED GREAT Clayston				\	101-02- REGE	F
	_=	1006		Musson			1			上
] =	CORE	1	MED GOET, Clayeter	1287	ļ				F
I	I, =]	l	Musikine, DC, Could fractuary fossicution	ospini ospini	1				E
ŀ	' =	Loss		Return		1				E
Ì	=	2								F
İ	=	Roy.							Hour Rouse BITTOG	片
]	=	1 76							1. F1. 42.10	F
	2-	B							THEN CHONS	F
		4	l						THEN COICE.	E
									STANGED.	E
	=							ı		E
	_ =							j		E
	3 -									F
	=	33	}			3,3	\	、 [F
		Ń				Plus !	01			E
			95 P.			D2 7	1/1	,		Ε
	4 -		1 35			CZ3	,	`.		E
	' =		\$2.3			10,	د ا	\		F
			FOR A	:		100%	1	3		F
			French Strong	AUOS		Car				E
	1 3		6 % 3	3 ₹						E
	5		3 3 3	3						
	=		8 12 3	. m						F
			Cocosse Duo 70 H	(4)				- 1		F
	=	2	,	, •					P1, 5.8', 450 -K=100	F
	7 3	- X	88a - 0	wenn over		6.0		ſ		E
- 45.00	6 -	X	.			Bunz				E
		4				Dia	- 1	L	-12,6.4, 57p -4=2p	F
		হা	31.			C1.1	4	1		E
	∃	Ž,	43			190%	V			Ε
- 45.90	7 -	2	26			7.1	寸:	Ц		E
			How	Воттомью 23 Диа	93		-			F
									PLT	上
	=								-K=-35p	E
	, T								P = POUNDS	E
	8 -							- [E
	∣∃								PLT values represent	F
									uncorrected ultimate	上
									loads.	F
	9 _									È.
	∃									F
								- 1		E
]					E
-46.60	10 =									F
ENG FORM	1836	PREVIOL	S EDITIO	ONS ARE OBSOLETE. 2/4		PROJECT	7>	1	P. F. HOLE NO.	
MAR 71	• •			ONS ARE OBSOLETE. 2/2	,	WWW C	05tS	Jae	Commer Expe. DH-1 5	lang.

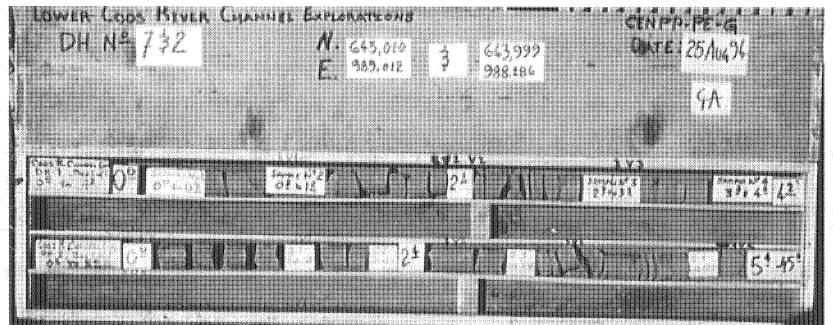
DRILLING LOG DIVISION IN PROJECT IN PROJ	HEETS
1. PRODUCT LOTS AND LAND LAND LAND LAND LAND LAND LAND	
LOCATION Constitute of State of August 150 M. L. L. D. LOCATION Constitute of State of 1988, 286.2 LOCATION Constitute of State of 1988, 286.2 LOCATION Constitute of State of 1988, 286.2 LOCATION Constitute of State of 1988, 286.2 LOCATION Constitute of State of 1988, 286.2 LOCATION CONSTITUTE OF STATE OF STATE OF 1988, 286.2 LOCATION CONSTITUTE OF STATE	
DOULLING ABERCY LOUS CONTRACTORS Super Bridge Decomposition Superior Decomposition Decomposition Superior Decomposition Decomposition Superior Decomposition Decomposition Superior Decomposition	
SORIELING AGENCY C.O.C. CONTECTORS CAR. BEHIND DEC. DEC. DEC. DEC. DEC. DEC. DEC. DEC	
BURNESS AND BOXES B. MANE OF CRILLER ROW BANKER B. DIRECTION OF HOLE S. THICKNESS OF OVERBURDEN DEG. FROM VERT. 7. THICKNESS OF OVERBURDEN D.O. B. DEPTH DRILLED INTO ROCK S. 4 B. TOTAL CORR RECOVERY FOR BORING 197ANCO. 7. THICKNESS OF OVERBURDEN D.O. B. DEPTH DRILLED INTO ROCK S. 4 B. TOTAL CORR RECOVERY FOR BORING 197ANCO. 7. THICKNESS OF OVERBURDEN D.O. B. DEPTH DRILLED INTO ROCK S. 4 B. TOTAL CORR RECOVERY FOR BORING 197ANCO. TO SHORM THE PROCESS OF OVERBURDEN D.O. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BOX STATUS OF BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. SHORLE STATUS OF MAJOR TO BOX STATUS OF BORING 197ANCO. B. DEPTH DRILLED INTO ROCK S. 4 B. DATE AND STATUS OF MAJOR TO BOX STATUS OF BORING 197ANCO. B. SHORLE STATUS OF MAJOR TO BOX STATUS OF BOX STATUS. B. LEVATION OF DORCK B. DATE AND STATUS OF MAJOR TO BOX STATUS OF BOX STATUS. B. DATE AND STATUS OF MAJOR TO BOX STATUS OF BOX STATUS. B. LOVER STATUS OF BOX STATUS OF BOX STATUS OF BOX STATUS. B. DATE AND STATUS OF BOX STATUS	
S. HAME OF DRILLER ROW BANKER 6. DIRECTION OF HOLE ROWATICAL MINISTER CORE BOXES 7. THICKNESS OF OVERBURDEN 7. THICKNESS OF OVERBURDEN 8. DEPTH ORILLED INTO ROCK 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL DEPTH OF HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. SCHOOL HAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. DON ON HOLE 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 8. TOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 9. DOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 1. DOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 1. DOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 1. DOTAL CORE RECOVERY FOR BORNING 18. DECAMBER 1. DOTAL	ROED
EDITECTION OF HOLE Note	
REPROPERTIES OF OVERBURDEN D.O. 7. THICKNESS OF OVERBURDEN D.O. 8. DEPTH DRILLED HTO ROCK 5.4 8. TOTAL DEPTH OF DATE OF BOTTON OF NATURALS BY SAMPLE BY S	
7. THICKNESS OF OVERBURDEN 8. DEPTH DRILLED INTO ROCK 8. DEPTH DRILLED INTO ROCK 9. TOTAL DEPTH OF HOLE 5. 4 ELEVATION DEPTH LEGEND CLASSIFICATION OF HATERIALS RECOVE BOX ON BOX	
B. DEPTH DRILLED INTO ROCK 3. TOTAL DEPTH OF HOLE S. 4 B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF RATES AND CORRESPONDE B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF ROBERTING OF ROBERTING OF RATES AND CORRESPOND B. SIGNATURE OF R	
S. TOTAL DEPTH OF HOLE ELEVATION DEPTH LEGEND CLASSIFICATION OF HATERIALS CORRESPONDED CLASSIFICATION OF HATERIALS CORRESPONDED CLASSIFICATION OF HATERIALS CORRESPONDED CLASSIFICATION OF HATERIALS CORRESPONDED CORRESPONDED CLASSIFICATION OF HATERIALS CORRESPONDED CLASSIFICATION OF HATERIALS CORRESPONDED CORR	2
ELEVATION DEPTH LEGEND CLASSIFICATION OF NATERIALS OF THE CONTROL	
-39.60 -39.60 -39.60	
1	-
1 1 1 1 1 1 1 1 1 1	F
	þ
TENU GIRETURE PROSTER LO. 0 Let to Must Giret, DR, Fresh, 100% Let to Must Giret, DR, Fresh, 100% Let to Must Giret, DR, Fresh, 100% Let to Must Giret, DR, Fresh, 100% Let to Must Giret, DR, Fresh, 100% Raw 2 Let 102, -K=127p Let 102, -K=	F
1 TO MUD GREY, DR, FRESU, 100% C.R. 145 1627 -K=1276 2 13 DB 2 13 DB 2 13 DB 2 13 DB 2 145	E
2 1,45 162p - K= 127p 162p - K= 127p 162p - K= 127p 173 162p - K= 127p 173 162p - K= 131p	E
2 - 10	þ
2 - 45.00 2 - 45.00	F
2 - 5. 100 BOSEDER 2.73 OB 2.74 OB 2.75 OB 2	E
2 00 00 00 00 00 00 00	E
2.73 0B 2.73 0	F
JOB DEFIL PREMINAGE DUE TO CIRI BISB DE FRET TIDE PANGENA CSA ALANA ROOS HOLE BOTTOM TO 20 AUG 94 ** PREMINAGE DUE TO TO POST LOA TO POST LOA	F
JOB DELL PARCHUAGE DUE TO CIRI S.SB DE FAST TIDE PANGENA CSA ALGORI ROOS HOLE BOTTOM TO 20 AUG 94 ** PREVIOUS IT TO POSITE LOS	E
-45.00 BODELL BREAMAGE DUE TO CIRI BEREAM BOTTOM TO 20 AUG 94 ** PREVIOUS BOTTOM TO 20 AUG 94 ** PREVIOUS BOTTOM TO 20 AUG 94 ** PREVIOUS BOTTOM TO 20 AUG 94	
- 45,00 HOLE BOTTOM TO 20 Aug 94 ** PREMINDED TO PREMINDED TO SITE TO POSITION TO POSITION TO TO POSITION TO POSI	E
- 45,00 HOLE BOTTOM TO ZO AUG 94 ** PREVIOUS BOTTOM TO ZO AUG 94 ** PREVIOUS BOTTOM TO ZO AUG 94 ** PREVIOUS BOTTOM TO ZO AUG 94	F
- 45.00 HOLE BOTTOM TO ZO AUG 94 ** PREVIOUS BOTTOM TO ZO AUG 94 ** PREVIOUS BOTTOM TO ZO AUG 94 ** PREVIOUS BOTTOM TO ZO AUG 94	E
-45,00 HOLE BOTTOM TO ZU AUG 94 ** PREVIOUS TO POST LOA	E
-45.00 HOLK BOTTOM DO 20 AUG 94 ** P. POENAND 40 TO POSITE LOA	
-45.00 HOLE BOTTOM DO 20 AUG 94 X P POENOMO LO TO POSIT LOA	F
-45.00 HOLE BOTTOM DO ZU AUG 91 ** P. PREVIOUS BOTTOM TO ZU AUG 91 ** P. PREVIOUS BOTTOM TO ZU AUG 91	E
HOLE BOTTOM TO 20 AUG 94 * P BELONDER B TO POTOT LOA	E
HOLE BOTTOM TO 20 AUG 94 * P BELONDER B TO POTOT LOA	F
HOLE BOTTOM TO 20 AUG 94 * P BELONDER B TO POTOT LOA	F
HOLE BOTTOM TO 20 AUG 94 * P BELONDER B TO POTOT LOA	
To Posot Loa	E
TO POSOT LOA	<u>"</u>
TAT	" þ
	E
! 	E
	þ
	F
Per Per lles	E
-K = -35€ 165.	E
Uhr Unionary lo	40 F
I I Tourse:	F
B = POTAT LOA	, E
Those , poi	Ţ
	ļ.
P= Poemos	F
DI Tuglica man	eant E
PLT values repre	
loads.	iave
	
m < =	F
49.60 10 -	NO.
MAR 71 (TRANSLUCENT)	1-Z

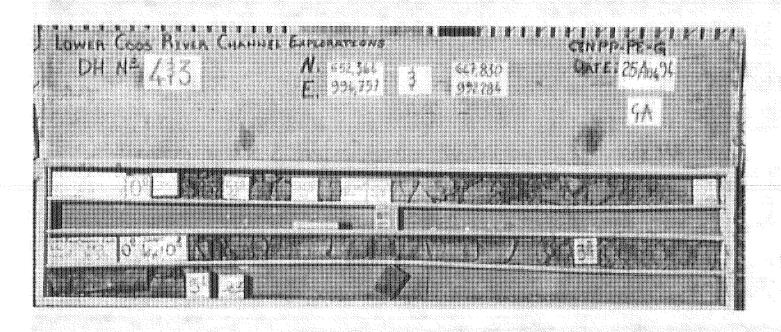
DRIL	LING L	og °	NORTH PACE:	o	INSTAL	PORT	400	DESTIRECT	SHEET 4
1. PROJECT		~		1	10, SIZ(E AND TYP	E OF BIT	NX - Diamo	W BEE
LOCATIO	N (Coordi	MIJES	2 CHANNIZ EXP		II. UAT	UN PUR E	LEVATIOI HL,L	SHOWN (TBM or MS).	<i>)</i>
2 DRILLING	AGENCY	,	E. 992, ZB	4-3.6			ER'S DESI	GNATION OF DRILL	
6.0	12 16		TOR/ SUB - PICCHER	Dereid	13. TOT	AL NO. OF	TLING OVER-	DISTURBED	UNDISTURBED
4. HOLE NO and file n			DH-3					φ	4
5. NAME OF	DRILLER		Bruce	<u> -</u>		AL NUMBE			
6. DIRECTIO		LE			IS. DAT	E HOLE	ST	RTED C	OMPLETED
X VERT	ICAL [INCLINE	DEG. PR	OM VERT.		VATION TO			17Aug 1994
7. THICKNE			1,00					70.2	0% 2
S. DEPTH D			< 6 3 R.8 ₹ 5.1 coa 5.4	آ <u></u> آ	l9. SIGN	Clan	INSPECT		
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF	MATERIAL	5	2 COSE	BOX OR	REMAI	RKS
•	ь	c	(Descripti d	on)		RECOV- ERY	NO.	(Drilling time, wet- weathering, etc.,	er tokk, depth of if significant)
- 40,28	_	C.L.	Sa amusic/Mas	370.6				0.0070 0.30	Rows Bor
- 40,55	=		DB SELVETONY/Mac	31000 34 6300	nts/D	Run!	† †	Down to Ex	or C54.
	=	177	DE TENTE TO DECE ES	> 40 Mu	n-	032		0,0 TOP	DE BOCK
	, =	1 /	Sand Ser sta	?, forsein	- 12865	e32			
	=] []	DE PINE to Voce FI Sonor Seen star Stone , whist, DE A To Gara.	•		10.			
] =		4051			100%			l
	=		DO FROSTA TO PD 1	at. Gard	h	CIR		•	
] []	TANDER GARY T	s varous	344) 1405-30				
	Z -		Bitral (harris						
	=		followon ord	JOSHY	JR.				
			foctomos	0			1 6		1
	=		FRACTURE				7		[
	3 –	K					ار		
	WACK -						Box		- 1
	*=	# !	09-ene Slevers	الموكاطيكا الماء		3.5	2		- E
	=			7 "		Run 2			
	4 -		Dock.			012			ļ
	7 =					Cla			ŀ
	=					100%			į.
						gic.R.			ŀ
	_ =	H = H							
	3 <u> </u>	111					4		į.
- 45.65	╡	\sqcup	DB-60e.			5.4	5.4		
	\exists		How Bottomes	17Au	494		Ì		ļ.
	\exists		,						E
ļ	6 =								[
	\exists				ļ				ļ
	\exists	j			İ	İ			Ē
-	ヸ	I					ĺ		-
- 1	7 - 글								F
[= =	1					ł		
- 1	크						ł		-
	Ξ	i			.				ļ
ļ	8 📑						1		
. 1	~ ‡	İ			- 1				ļ.
ļ	Ξ_	.							‡
İ	\exists				ļ				Ē
	<u>,</u> =	İ							
	9 寸	1					,		þ
	\exists								
	크	į							E
	,, ∃				1				
NG FORM	<i>Ⅲ</i>					PROJECT	<u>.</u>		HOLE NO.
MAR 71	1030	PREVIOU	S EDITIONS ARE OBSOLET (Translucent)	· //			oos Ru	en Charact	DH-3

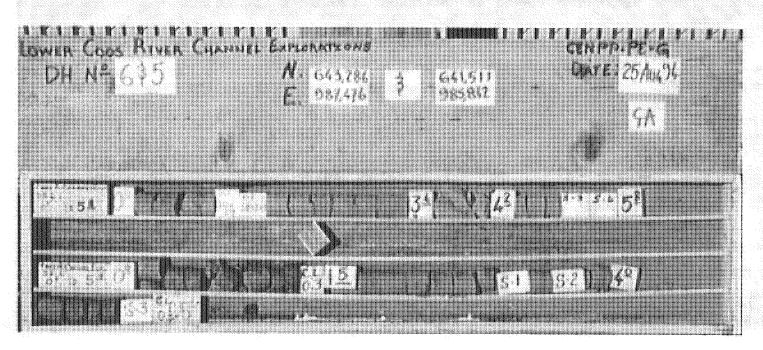
A-7

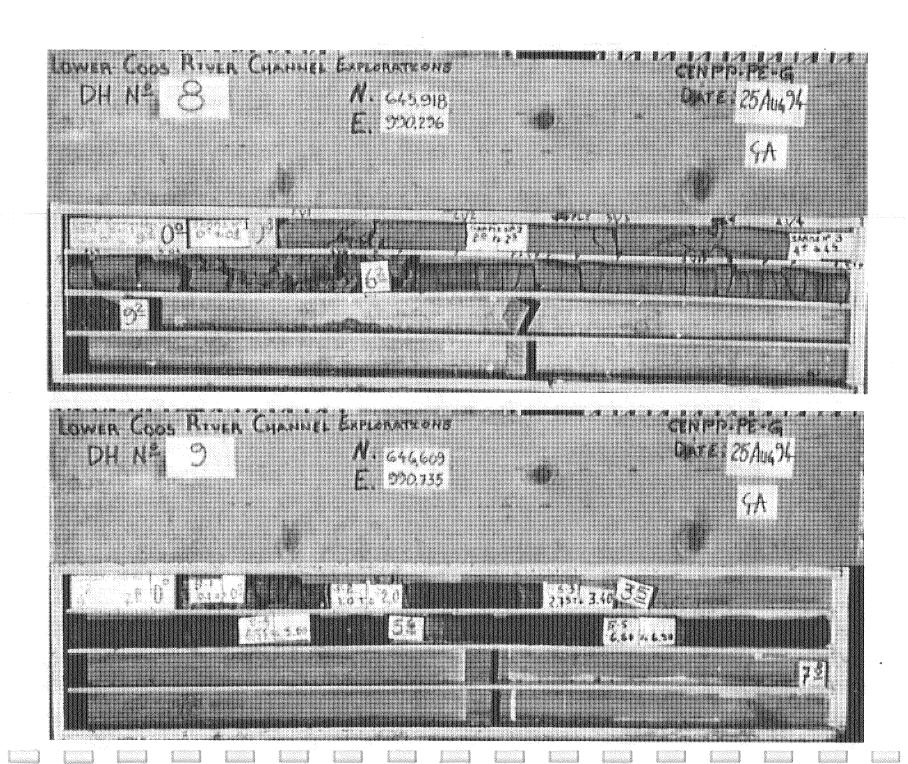
									Hole No.	DH-4	
	LING L	og '	NOR	TH PACTURE	_		LATION	JC 7	DIGTRICT	SHEET !	T#
PROJECT	_	1.	_	_		10. SIZ	E AND TYP	E OF BIT	1/Y - Distance	A BC	
LOCATIO	M (Canadi	sates or S	etion)	NNEL BOL.		11. DA1	UM FOR E HL		N SHOWN (TOM OF MIST.)	
DRILLING	2, 364	-2 4		,757.1		IZ. MAN	IUFACTUR	ER'S DES	IGNATION OF DRILL		
CO	C. Cons	TILACTO	r./3015	- Percuse Co.		13. TO	TAL NO. OI	FOVER-	SOO DISTURBED	UNDISTURBE	D
and file n	umber)			DH-4			AL HUMBI		:	\mathcal{P}	
NAME OF	DRILLER	Re	w B	akze			VATION G				
	ON OF HOI		_			16. DAT	E HOLE		ARTED C	MPLETED	
/	SS OF OVE			DEG. FROM		17. ELE	VATION T			16 Aug 94	_
DEPTH D				(Z,671)* 3.50'					Y FOR BORING	00%	2
TOTAL D	EPTH OF	HOLE		3.501		19. 5161	Sur A	00	TOR Char		
LEVATION	ь	LEGEN	, c	LASSIFICATION OF M. (Description)	ATERIAL	.s	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMAI (Drilling time, waite weathering, etc.,	RKS or loss, depth of if significant)	
33.08	0 =	loss						\ \	0.0 TO 0.5	Rouse Bi	Ļ
4.75] _=	R.B	1	<u>.</u>			0.5	1 7	DOWN TO SE	44 CS4.	
	0.6			55575700E/1	10051	wĒ	Roy	T	0.0 TOP	DE ROCK	۲
-	1, 3	Ġ,] '	Muso Gener			Die		pr		
43,00-	1,3		06	(DQ)			C. R.	1			. 1
KIN "	' ヨ	J	0550	દ			100%	01	f1, 1,4, 1	5.D ř	
		K					Ruz	3			
			Pue				1 Z 2 2	Box			
400-	=	7	13 ·				00	Ŋ			ŀ
u							C.R.				
	‡	K	Been Cultists	•			12013				
	3 =		Desir Being To Greeting								ļ
5.00	7 #		महरूप केल वि								Ē
15,25	二三	<u> </u>	D3-E	or			3.5				ŀ
	╡		Hour	Buston 16	Aces	1994				······································	
	4-3		,,	,, .,	·						þ
	'										F
	크										Ė
	Ξ										F
ŀ	5 =										E
	∃							Ì			þ
.	크	,									E
l	∄										þ
	6 📑	1									E
	∃								~		F
ļ	=					1		Ì	CAG WAS DRE	wood book	Έ
	∃								TO TOP THEN	CLOADD BET	E
	7 - [ļ	out w/ Row		E
	∃	ļ				- 1					E
	寸	.						ŀ	R.B Row	BA	E
	8.=								P= pour DS		F
ľ	7 1										E
-	\equiv	ŀ							PLT values		ŧ
1	7					-			uncorrected loads.	ultimate	E
],	Ē					1			ivaus.		E
F	プヨ										E
- 1	三										E
75	=										E
2000	<u>り ヨ</u> 1836 ・								on Chara Exp		F


DRILLING LOG	NORTH PACTET	INSTALLATION	D	and Deser.	SHEET /
1. PROJECT	1 NOWIET SPREASE	10. SIZE AND TYP	E OF BIT	NX DIAMO	UN BET
Livere Cros Rive	NO CHANNES EXPL.	11. DATUM FOR E	LEVATION	SHOWN (TBM or MS	E)
N. GH. SILA E.	or Station)		LL L	GNATION OF DRILL	
3. DRILLING AGENCY COC CONT RACTO	4 6	FA	ELTINA	1500	
4. HOLE NO. (As shown on d	freshing title	13. TOTAL NO. OF BURDEN SAMP	OVER- LES TAKE	M CHSTURBED	UNDISTURBED
S. NAME OF DRILLER	DH-5	14. TOTAL NUMBE	R CORE E	OXES /	
Rea	o Bauce	15. ELEVATION G			
6. DIRECTION OF HOLE		16. DATE HOLE		BAUG 94	ZBAUG 94
		17. ELEVATION TO		CK - 40.00	
7. THICKNESS OF OVERBUR	(00100) 0107	18. TOTAL CORE			39 1/4 3
S. DEPTH DRILLED INTO RE S. TOTAL DEPTH OF HOLE	720	19. SIGNATURE OF	INSPECT		0
		Le IXCORE	BOX OR	DEM	ARKS
ELEVATION DEPTH LEGE	(- escription	RECOV-	BÓX OR SAMPLE NO.	(Drilling time, we weathering, etc	iter loss, depth of -, if significant)
-40.090		Rus 1	 		OF ROCK
	Bus sione	D 1.5	4	• • •	E
	DU 21 5000	1			<u> </u>
I I <u>I</u>	TENNE E DELLA DELLA	Lo.3			F
	DB Sanstand, DR, F	wsv. 80%		P1 1 1	//s. =#. 00 = F
	- be Lt. Garr (Der), Man	v. e.k.		- F1 , 1.0 ,	115p -K-80p E
그림에	13 tellours see	1.5			E
	-100¢	Ruo 2			E
=	og	028			125-K=90P=
2]e 		C235		_ A-e , 2000,	
] <u> </u>	_	L0.15		- f=3, Z.15,	75-K=10P
	7 06	94%	3,		Ε
	1	C.R	V		E
3	1, 09 08		130		E
	7 be		<i>-</i>		<u> </u>
					F
	J.				• =
]]34	٠				F
4 - 81 00	<u>्र</u>	4.0	.	- P. Z. 4.	z. E
	٢	Rw3	1 }	1 1 1	Z, Hp -K= 106p
	be .	019		/ _ P-5 , 4.5 , (k.R.90%)	_
	4 A	C 0.9	# [421 -K=71 =
1 33		20.1	y 1	(c.R. 90%)	F
-45.09 5 -	en I-wou	5.0	5.0		E
	HOLE BUTTOMES ZALLE	194]	•	E
		1 1		PLT	E
				-K=-35p	F
<u> </u> <u> </u>	ļ		1	P = Powers	F
r 🖪				•	F
			-	PLT values	represent E
				uncorrecte	
1 =				loads.	=
7 -]					F
ľ					F
	1				E
‡					E
[8 -]					F
PI					=
ΙΞ					F
] [F
]]			F
9 =					. F.
ゴ					E
					E
					<u> -</u>
50.09 10		. []			F
NG FORM 10 0		RROJECT-		<i>(</i>) ~	HOLE MO.
MAR 71 10 30 PREVI	(TRANSLUCENT)	Lower Co	os n.c	HANNUR EXPL	DK- 5


			V		Hole No.	DH-6
DRIL	LING LOG	NONTH PACIFIE	INSTALLATION FACE	-/ A. Je)	DESTRUCT	OF / SHEETS
. PROJECT		_	10. SIZE AND TY	PE OF BIT	NX, DEAMON	O BET
Lower	- Coos Kiza	ER CHANNEL EXPL.			N SHOWN (TBM or MSL)
No 64'3	N (Coordinates of 2864 . L	50 987, 476 5.8		LLW	IGNATION OF DRILL	
DRILLING	AGENCY	11 0 7 0	1	515NG		
L HOLE NO.	(As shown on d	Siess - Berever Description,	13. TOTAL NO. C	FOVER- PLES TAK	EN CHETURBED	UNDISTURBED
		DH-6	14. TOTAL NUME	FR CORE		
. NAME OF	DRILLER \mathcal{R}_{c}	w BAKER	IS ELEVATION			
DIRECTIO	N OF HOLE		16. DATE HOLE	IST.	ARTED IC	OMPLETED
EVERTI	CAL DINGLI	DEG. FROM VERT.	AL DATE HOLE	2	0 Aug 94 2	20 Aug. 94
. THICKNES	S OF OVERBUR	DEN -37.92\ 1.24'	17. ELEVATION			
. DEPTH DE	RILLED INTO R	OCK 5.80	18. TOTAL CORE			20 3
. TOTAL DI	EPTH OF HOLE	5.80 low Down	Cla	1.60	Januar Som	
ELEVATION	DEPTH LEGE	ND CLASSIFICATION OF MATERIA	LS S CORT	BOX OR	REMA (Drilling time, wat weathering, etc.	RKS or lose, depth of
•	b c		ERY	NO.	meathering, etc.	if significant
39.16	0 7	- 4	Pius		- KT ous	216p -4
	1 12	Sampercal St.	TSTOJE D. 3.4	4 1.	- P-2 0135	2016 - BIGE
		7 PB-ground 1) France (408)	1 -1-		-0-30.95	1870 336
	w	I Swarry	- -			= IS2A
	ロコル	a socote cume	10-11		DEPTH O.	
	 	4 140 325 320 0000 00	100 %		TOP OF	round
	ه ا ا	SANO,	C.R.		[· .
		NED TO LA G			1	ļ.
Ì		II UC, PRESH,		11		E
ĺ	2 -	MSU TO FAM	TLY		1	E
		Besoco.				E
	- Z	PR-GIOUND		1	İ	E
	- 5		1		A4 24-	707 . 4 . 175
	1	.	.	101	- P4 7.58- -P-5 7.73-	2072 Ke172
	3 - 7	ľ		1 3	P-6 2.88-	1924 KIB
	#	86EDE	3.4	x	7 3.03	209 p - 147
		DB	Run Z	Box	- 8 3.28 - - 0-0 4.35 -	1970 1
Į	#21	Represent	00.8	12	P. W 4.45	IBED WIST
ĺ	4 30	_	C 0.5		(E.R. 67.5%)	ļ=
1	4	R	10.3		HAD TO PULL	OFF DUT
		PB	Rus 3	7 .	TO BENER TO	AFFEC.
		i De	01.6		A Loce De	117 70
Ì	- ∃ ∞	1	16		RUDRIU Pur	WO OFF BREEF
	< ∃ b		40,0			Ε
ŀ	, 士-格	be .	100%			E
1	بها إ		C.R.			E
		 <u>\$</u> .75		1 1		<u> </u>
44.96	12	HONE - BAN	5.8	5.5		
	6 ∃	HOLE BOTTOMUD ZO AL	£'94			E
l					-K:-35	ļ=
ļ	_=				b = bornos	F
	\exists				•	F
[.					PLT values	represent E
	7 →	1]	uncorrected	
1	⇉	*			loads.	E
		1			,	E
ľ	# #			1 1		
	, =					E
-	8 –			j i		E
- 1	7		ł			E
						E
	#					
	" 🗆					
	a 📑	}				. E
1	⇉					E
- 1	-3		·	1		
	3					E
ايتمما	10 I	·	1	1		F
49,16 G FORM	ν		PROJEC		R. CHANNOLE	


LEADING COMMERCIAL PROPERTY OF THE PROPERTY OF	DRIL	LING LOG	DIVISION	Para		LATION	7)-	•	SHEET /	7
LOCATION CONTINUES TO STATE (MAD) No. CAS. (10.2) LOCATION CONTINUES TO STATE (MAD) NO. CAS. (10.2) LOCATI	1		Pour	IACTIFIC						=
DILLIUS ADDRESS OF OVERSUADDE AND ADDRESS OF A STATE OF THE ADDRESS OF OVERSUADDE AND ADDRESS OF	Lower	2 Coos RE	UNR CHAIR	L EXPL	11. DAT	UM FOR E	LEVATIO	N SHOWN (TEM or MSL	<u>, , , , , , , , , , , , , , , , , , , </u>	\dashv
C. SAR LELEVING AGENT AND ACCOUNTS AND ACCOU	2. LOCATIO	H (Coordinates o	Station) N. 64	5,010.1	1	4	M. L.L	. W.	-	
DOE - Characteristic Control of the			<u> </u>	101214	12. MAN			_		7
LA NAME OF CRILLER BORNETON OF MORE BORNETON OF MORE COMMITTEE	COE	- CONTRACT	on sue Breun	elequare Ca	13. TOT				UNDISTURBED	-
LEVATION DEFTI LEGEND SANSSTONS LATER THE STATE OF BOXES 1. EVERY TOWN OF HOLE A STATE OF HOLE SANS STANS LATER AND STANS	and file m	· (As chown on di umber)	rading title	DH-7	BUR	DEN SAMP	LES TAK	EN Ø	<i>\$</i>	
EDITION OF PIOLE DEE, FROM VERT. DEE,	S. NAME OF									┛
DECENTION CONTINUED TO DOCK 4.3 1. TOTAL EDEPTH OF MOLE 4.3 1.	6 DIRECTIO	ON OF HOLF	ON BAUNE		18. ELE	VATION G		12100		4
7. THICKNESS OF OVERSUNDEN 2. 4) ** 10. DEFTH OF THE SERVICE 10. DEFTH DELECTION 10. DEFTH DELECTION 10. DEFTH DELECTION 10. DEFTH DELECTION 10. DEFTH DELECTION 10. DELECTION DEFTH DELECTION 10. DELECTION DELECTION DELECTION 10. DELECTION DELECTION DELECTION DELECTION DELECTION DELECTI	_		IED	DEG. FROM VERT.	16. DAT	E HOLE	1/9	Aug 94 1		1
BETT DIFFLED INTO BOOK 4.3 TOTAL DEFIN OF COUNTY FOR DOWN FOR DOW	7 THICKNE	er or ovennun	DEN (D (1)		17. ELE	VATION T				7
RELEVATION DEPTH LEGEND CLASSIFICATION OF MATERIALS (Continued to the continued of the cont									0%	7
ELEVATION OPETH LEGEND CLASSIFICATION OF ATTENIALS A PROPERTY OF THE CONTROL OF ATTE					19. SIGN	ATURE OF		OR		7
-46.10 The Decision of the Control				ATION OF MATERIA	1.5	% CORE		REMAI	eks .	┥
### ### ##############################			· i			RECOV-	ISAMPLE	(Drilling time, water weathering, etc.,	r lose, depth of if significant)	
## SANDSONIC 15 PLOS GRAZZOD 12.1 15 PLOS GRAZZOD 12.1 15 PLOS GRAZZOD 10.0 Z 1		⊘ − 15	0.4				 	<u> </u>		+-
## HED TO FING GRAETER	טנ יטך -		_		•		4	2 0.0 102	OF ROCK	F
### HED TO FING GRANADO C21 LO.D D. S. pK-21p D. S. pK-21p D. S. pK-21p D. S. pK-21p D. S. pK-21p D. S. pK-21p D. S. pK-21p D. S. pK-21p D. S. pK-21p D. S. pK-22p D. S. p. pK-22p D. S. p. pK-22p D. S. p. pK-22p D. S. p. pK-22p D. S. p. p. p. p. p. p. p. p. p. p. p. p. p.				FON E		DZ.	1	0.55		F
1 2 2 2 2 2 2 2 2 2			AL HED TO	FINE GRAIN	ঠে	CZ.1	'	υι	-ZIa	F
2 Da, Fassik W SCATTERED 100 % 72 138 72 73 74 75 74 75 75 74 75 75		 	SAUS STONE	LT TO MED GO	LY,	LO.0		 	(F)	E.
## 138 POSSILS 138		/ 그 길	DQ FREE	H. W SCATTER	evD					E
## 15 P - K-22P 13 15 15 15 15 15 15 15	,		14 0B	•			.	1.38		F
2		一 一 。				16 E.K.		7 7-3	700	E
15:10 Discolar Raw 2 Discola	ļ	#	9 8]		1.720 = KE		E
15:10 Discolar Raw 2 Discola		_ = = = = = = = = = = = = = = = = = = =	ω _B				01	- 62P -K=	276	E
### ## ## ## ## ## ## ## ## ## ## ## ##		~ 村	DBEOR				3			F
15 pg 22 55 p 15 pg 244 3.25 pg 144 3.25 pg 144 145 pg		74	8			Rew 2	ן אַ	3 443 A		E
4-10 15 15 15 15 15 15 15							63	50 P -K-	15P	上
16:10 16		┤ ┤ ┤	LF DB				``	747		E
4-45:10 Herr antonio 2044 4.3 PLT AK = -35p PLT Values represent uncorrected ultimate loads.		_				100		2.6		E
45:70 10 13 10 10 10 10 10 10	ŀ	기기	1			100	1 1	•		
ASILO HOLL ATTOMOD WALL 94 PLT KE-35p P= Pounds PLT values represent uncorrected ultimate loads.		7-14	13 DB		ĺ	gC.K.	11	3.35 AS		F
ASILO HOLL ATTOMOD WALL 94 PLT KE-35p P= Pounds PLT values represent uncorrected ultimate loads.		74						570 -K=		L
The state of the s	1	714 3	. Fa 8				1 1	- 4-th -K=	120	F
ASPON ASSOCIATION OF THE PLANT		6					- 	3, 45		F
How Corromod 20Aug 94 PLT KE = 75 p F = founds PLT values represent uncorrected ultimate loads.		4 - 1	2 23 _							F
PLT AKS-35p P= POWNDS PLT values represent uncorrected ultimate loads.	-45:70		1 9-27			4.3	4.3			丰
FERNAL SECTION OF THE PROPERTY			How a	MOMOD 20A	44 94					F
FERNAL SECTION OF THE PROPERTY	j	=				-	ł			F
FERNAL SECTION OF THE PROPERTY	j.	<-d			.		i			E
FERNAL SECTION OF THE PROPERTY	}	[?] 크				- 1	l			F
FERNAL SECTION OF THE PROPERTY		=	İ		i	J	[E
FERNAL SECTION OF THE PROPERTY		. 🗇	ļ			i	- 1			E
FERNAL SECTION OF THE PROPERTY	ŀ	#		•		. [1			E
PLT values represent uncorrected ultimate loads.	1.	6 - 				į				E
PLT values represent uncorrected ultimate loads.		~ 🗇			j	1		-K=-35p		E
PLT values represent uncorrected ultimate loads.	ľ	=						P- Promo		E
g = 1 uncorrected ultimate loads.	1	7]		-			, - 100000		
g = 1 uncorrected ultimate loads.		7	1]		PI T values	ranraean4	E
So. 90 n	1:	7 –				1		IIDCOMPATA	ultimate ultimate	上
Sp. 90 n	'	7 7			.	1			ununate	F
50.90 n		7			}		1	ivaus.		F
50.90 n		日			- 1	ŀ	ſ			F
50.90 n		╡			- 1		- 1			E
50.90 n	1,	$g \dashv$	1							二
50.90 n =	ľ	7 7				1				F
50.90 n =		_=	1		}	- 1	[F
50.90 n =		コ	1		- 1	- 1				F
50.90 n =		7					-			E
50.90 n =	- 1	9 🚽				1			•	上
IC FORM 30.00	-	′ <u>]</u>	}		i					F
IC FORM 30.00	1	_=			ļ	- 1				F
IC FORM 30.00	1	\exists	1							F
IC FORM 30.00	امم	, ∃				- 1				F
MAR 71 18 36 PREVIOUS EDITIONS ARE OBSOLETE. 1/ LOUINE CALCULO CHOLOUS EXOI NUL 2			<u> </u>			280:55			Lugue we	上
(TRANSLUCENT)	MAR 71	036 PREVIO		BSOLETE.	I,	LOWER C	Dog Piza	LE CHANNER EX	A DH- 7	


A-12


							·	Hole No	DH-9	
DRIL	LING L		HOISIVIE	PORTH PACTIFE	INSTAL		הניםו	Disavier	SHEET /	
I. PROJECT	Lowe	se Coo	5 Brun	CHANNEL EXPL.	10. SIZE	AND TYP	E OF BIT	WALLE - XY	on Bet	1
2. LOCATION	N (Coord)	neten or S	tetton)		11. DAT		HLLL	N SHOWN (TBM or MS	3	
N.60	46,60	9.4	E. 990	,735 4.8	12. MAN			CONSTION OF DRILL		\dashv
3. DRILLING COE-	CONT.	LACTOIZ	/ses- /z	CHERTRALEN CO	13. TOT		ATLIN		UNDISTURBED	4
4. HOLE NO.	. (As shor	m on drá	ving title	CHERTRELENA CON RUGO ATED DH 9	- aŭk	AL NO. OF DEN SAMP	LES TAK	EN Ø	Φ	╝
S. NAME OF		1				AL NUMBE				1
6. DIRECTIO	N OF HO		Bour	₹	 	VATION G		LLUE	OMPLETED	4
₩ VERT			D	DEG. FROM VERT.	16. DAT	E HOLE			29Aug 94	
7. THICKNES	SS OF OV	ERBURD	EN-31	1.2		VATION TO				\Box
8. DEPTH D			$\overline{}$	7.8		ATURE OF			9%	닉
9. TOTAL DI	EPTH OF	HOLE	,	7.8	1	augh 5	Can	-dun		1
ELEVATION	1	LEGEN	or cr	ASSIFICATION OF MATERIA (Description)	LS '	% CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling time, we weathering, etc.	RKS ter loss, depth of , if significant)	
- 20 ==	0 -	X16./	AB	4		<u> </u>		<u> </u>) <u> </u>	4
-38.20	<u>ا</u> [Q.		SANDSTONE		Run	1	PLT PLT	DE ROCK	E
	_	1 -	06	Mesoto Former Guiso	التياليين	03.5				E
] =	14		SAUDSTONE, G	REY	LO,0		-1-2,0.70, -1-2,0.52,	41p -Keby	þ
	J =	1.0	99	CD (Someour)	aprox)			-1-2,0.52,	32p -4=17p	E
	=		1	FRESH, MEN TO F BURDED, NUMER	Aintly	100%				þ
		길		PROSU, NOV 10.		C.R.				þ
-40.00	=	12		BURDED, NUMER	ww			1		E
	_ =			Fossies.						þ
	Z -	P 20	63					F-3, Z.W,	41p -Kabp	þ
	=	P						P-9 VOD - 1-5, 2, 36,	401 K-5p	E
	_	A 2.75						- P-6, 2, 50,	39p -K-4p 41p - K-6p.	E
	=		03					- P-7, z.62,	(-F ₽ ₽.	þ
	3-							1		F
}	=	"						1		E
		3.40	EOIR			3,5	_	- P.B. 3.55 , 6	Bp 440 33 p	E
		Ы				RUDZ	01	- P-9,5,68	40 p - K: 5 P	F
	4-					D2.1	ヽ		60 / -K-EP.	E
	r -	 	нь			12.1	·Bex	P-13, 4.31,	15p -Krop 35p -Krop	þ
	Ι Ξ	£ 4.55	مدا			LOID	13	1-14,4,45	370 -K=OF	E
		4	00			100%	'i`	1		E
	<u></u> =	4	De			e.2.				F
	5	p 5.c.						P-15, 5.12,	35 pK=0p	E
			CRUSHED							E
	_	7	100:134	ano	ļ	5.6	1	- P-16, 5.65,	35p -K=09	F
	Ε΄.	=	140	æ		Raw3		,,	•	F
	6-		20			2.50		AM 6/3 .	SepKelp.	E
į	=	华	263 243 283			C2.7		- P-17, 613 , -P-18, 621 ,	56 p -K=(p)	F
		6.40				Loil				F
-45.00	= =	4	D8			95%	}			E
}	7 =	26.90	99		Ì	C.R.		8/4 3	450 . K.A	E
	7 ╡	a			ļ			- P-20, 7.18,	350 -K=0p.	F
	_=		MS.		Į		4	A 22 VOEA	300 -K-40	F
ا . بر	\exists	عُز	DA EOR	Rau	ļ	7.8	78	-1-25, 7.50,	360 -K=10	E
-46,10	_ =	44		- BOTTO MOD 24 AUG	an	100	77.75	1,777	37/ -K=20	士
	β		HOW	MOTHER CHINA	74		1	PET		F
[\exists		 		.		i	-1<= -35p64		E
	-				ļ			P= Pounos		E
İ	╡	•			İ					F
	9 =					1		PLT values		F
ĺ	´ ∃							uncorrecte	d ultimate	E
į	ᅼ		•		- 1			loads		F
	∃				ļ			[F
10 m	, I		1		l	ļ		I		
-48,30 NG FORM	<i>10</i> –		<u> </u>			PROJECT		<u> </u>	- HOLE NO.	┸

Appendix B

Lab Test Reports

DEPARTMENT OF THE ARMY

NORTH PACIFIC DIVISION LABORATORY CORPS OF ENGINEERS 1491 N.W. GRAHAM AVENUE TROUTDALE, OREGON 97060-9503

19 Sep 94

CENPD - PE - GE - L (1110-1-8100c)

MEMORANDUM FOR Commander, Portland District ATTN: CENPP-PE-GG (Chris Budai/Jim Griffiths)

SUBJECT: W.O. # 94- 497 Report of Unconfined Compressive Strength and Point Load Tests on Rock Core Specimens

Project: Coos Bay Channel Explorations Intended Use: Strength evaluation of dredge channel bottom material Source of Material: Navigation Channel, Lower Coos River, Charleston, Oregon CENPP-PE-GG Submitted by: 19-26 Aug 94 Date Sampled: Date Received: CRD, ASTM, ROCK TESTING HANDBOOK Method of Test or Specification: a) DD Form 448, MIPR No. E86-94-0087 dated 29 Jul 94 b) Telecons with Messrs. Phil Grubaugh, Clayton Amundson, and Chris Budai 26 Jul through 12 Sep 94, wherein test program and cost estimates were discussed. c) NPD Forms 300, dated 17-26 Aug 94, covering transmittal of approximately 56 lineal feet of waxed rock core samples.

- 1. Attached is report of unconfined compressive strength and point load tests performed on nominal two-inch core samples to evaluate the strength of Lower Coos River channel material. Included are:
 - a) Enclosure 1, Table I, Report of Unconfined Compressive Strength Tests on Nominal 2-inch Diameter Rock Cores.
 - b) Enclosure 2, Table II, Report of Point Load Tests on Nominal 2-inch Diameter Rock Cores.
 - c) Enclosure 3, Calibration Curve for Point Load Test Apparatus with 600 psi Gauge.
- 2. Approximately 56 lineal feet of waxed rock core was received 19-26 August 1994 for unconfined compressive strength and point load tests. All of the core specimens were kept sealed and stored at 40 F (simulating in situ temperature) until time of test. Every effort was made to maintain as-received moisture content using moist toweling and plastic wrap until test. Test specimens for compressive strength were cut to length with a hacksaw and capped with sulfur capping compound. Unit weight tests were made based on the measured volume and weight of unconfined compressive strength specimens prior to capping and testing. Moisture content was determined on core remnants after test.
- 3. Point load tests were performed in the diametral orientation on all but four samples, which were with axial orientation, as noted on enclosure 2.
- 4. A series of calibration checks were made on the Portland District's (CENPP-PE-GG) Point Load Test Apparatus used in the current test program. Results indicated a variation of approximately 8 to 15 percent between successive runs using the 600-psi gauge. Reconditioning of the test apparatus is warranted. A recalibration is recommended after reconditioning or whenever changes to the equipment are made.

CENPD-PE-GE-L (94-497)

5. This completes all work requested.

Copy Furnished: CENPD-PE-GE

TIMOTHY J SEEMAN Director

Enclosures Direct

B-2

COOS BAY CHANNEL EXPLORATION Charleston, Oregon

Table I

Report of Unconfined Compressive Strength Tests on Nominal 2-inch Diameter Rock Cores

	·		on Homman 2 mon B	numeron Rook Co	103		nconfined essive Str	
Drill Hole No.	Field Classification	Depth, Feet	Elevation, Feet	Moisture ¹ Content,	Unit ² Weight, Lbs/cu. ft.	Ult. Load, Lbs.	psi	psi, ³ Corr.
1-1	Claystone	3.30/3.70	-42.10/-42.50	28.7	118.5	3480	1060	1060
2-1	F.Grained Sandstone	0.63/1.45	-40.23/-41.05	27.8	120.5	4520	1400	1410
2-2	F.Grained Sandstone	1.73/2.26	-41.33/-41.86	26.2	124.7	5140	1650	1620
2-3a	F.Grained Sandstone	2.73/3.58	-42.33/-43.18	31.6	119.2	5040	1570	1570
2-3b	F.Grained Sandstone	2.73/3.58	-42.33/-43.18	27.7	120.5	5130	1600	1590
2-4	F.Grained Sandstone	4.46/5.27	-44.06/-44.87	25.8	124.2	5240	1620	1620
3-1	Siltstone/Mudstone	0.30/0.60	-40.60/-40.80	24.3	123.3	1950	610	580
4-1	Siltstone/Mudstone	0.80/1.30	-42.20/-42.70	19.4	130.4	880	270	260
5-1	M-F Grained Sandstone	2.31/2.60	-42.40/-42.80	17.4	131.6	2560	820	820
5-2	M-F Grained Sandstone	3.00/3.60	-43.00/-43.60	18.3	133.6	2300	710	710
5-3	M-F Grained Sandstone	4.60/4.90	- 44.70/-44.90	21.3	128.7	260	80	70
6-1	F.Grained Sandstone	0.53/1.18	-39.69/-40.34	23.2	125.1	5310	1620	1630
6-2a	F.Grained Sandstone	1.16/2.43	-40.34/-41.59	22.9	122.6	4700	1450	1450
6-2b	F.Grained Sandstone	1.16/2.43	-40.34/-41.59	23.2	126.2	4940	1530	1530
6-3	F.Grained Sandstone	4.53/5.15	-43.69/-44.31	24.9	124.9	5670	1750	1760
6-4	F.Grained Sandstone	5.15/5.75	-44.31/-44.91	21.0	130.7	5380	1650	1650
7-1	M-F Grained Sandstone	0.00/0.40	-40.90/-41.30	18.2	129.4	1370	430	440
7-2	M-F Grained Sandstone	0.80/1.20	-41.70/-42.00	17.8	127.9	1060	330	330
7-3	M-F Grained Sandstone	2.70/3.30	-43.60/-44.20	18.6	126.9	920	280	280
7-4	M-F Grained Sandstone	3.80/4.20	-44.70/-45.10	19.1	130.9	1520	470	460
8-1	V.F.Grained Sandstone	0.00/0.80	-38.00/-38.80	17.4	130.6	2380	760	760
8-2	V.F.Grained Sandstone	2.00/2.50	-40.00/-40.50	18.0	130.5	2640	820	820
8-3	V.F.Grained Sandstone	4.00/4.40	-42.00/-42.40	18.2	128.4	2200	680	680
9-1	M-F Grained Sandstone	0.10/0.50	-38.40/-38.80	14.5	136.5	1620	500	500
9-2a	M-F Grained Sandstone	1.20/1.50	-39.50/-39.80	16.2	137.7	770	230	230
9-2b	M-F Grained Sandstone	1.60/2.00	-40.00/-40.30	16.2	136.1	580	170	170
9-3	M-F Grained Sandstone	2.75/3.40	-41.05/-41.70	15.4	136.2	1060	320	320
9-4	M-F Grained Sandstone	4.55/5.00	-42.85/-43.30	16.6	136.1	570	180	180
9-5	M-F Grained Sandstone	6.60/6.90	-44.90/-45.20	19.2	133.5	70	20	20

Note: 1) Moisture content of sample at time of test.

²⁾ Unit weight determined by measured volume/weight method.

³⁾ Corrected for L/D ratio.

COOS BAY CHANNEL EXPLORATION Charleston, Oregon

Table II

Report of Point Load Strength Tests
on Nominal 2-Inch Diameter Rock Cores^{1,2}

		on No	minal 2-Inch Diamet	er Rock Cores ^{1,2}			-
Drill Hole No.	Field Classification	Depth,	Elevation, feet	Diameter, inches	Length, inches	Ultimate Load, lbs	Point Load Index, psi
2-1a	F.Grained Sandstone	0.63/1.45	-40.23/-41.05	2.03	2.00	255	60
2-1b	F.Grained Sandstone	0.63/1.45	-40.23/-41.05	2.03	2.00	275	65
2-1c	F.Grained Sandstone	0.63/1.45	-40.23/-41.05	2.03	2.00	253	65 —
2-1d	F.Grained Sandstone	0.63/1.45	-40.23/-41.05	2.00	1.53	173 ⁴	75 ⁴
2-2	F.Grained Sandstone	1.73/2.26	-41.33/-41.86	1.99	2.30	341	60
2-3	F.Grained Sandstone	2.73/3.58	-42.33/-43.18	2.02	2.20	320	85
2-4a	F.Grained Sandstone	4.46/5.27	-44.06/-44.87	2.04	2.00	270	80 —
2-4b	F.Grained Sandstone	4.46/5.27	-44.06/-44.87	2.04	2.00	270	65
2-4c	F.Grained Sandstone	4.46/5.27	-44.06/-44.87	2.04	2.00	288	70 ·
2-4d	F.Grained Sandstone	4.46/5.27	-44.06/-44.87	2.04	2.00	222	55
4-1	Siltstone/Mudstone	0.80/1.30	-42.20/-42.70	2.00	1.52	8 7⁴	204
5-1	M-F Grained Sandstone	2.60	-42.40/-42.80	1.98	2.00	143	35
5-2a	M-F Grained Sandstone	3.10	-43.00/-43.60	2.04	2.00	30	5
5-2b	M-F Grained Sandstone	3.50	-43.00/-43.60	2.03	2.00	12	5
5-3	M-F Grained Sandstone	4.82	-44.70/-44.90	2.01	1.57	21 ^{3,4}	5 ^{3,4}
6-1a	F.Grained Sandstone	0.53/1.18	-39.69/-40.34	2.01	2.00	287	70 .
6-1b	F.Grained Sandstone	0.53/1.18	-39.69/-40.34	2.01	2.00	288	70
6-1c	F.Grained Sandstone	0.53/1.18	-39.69/-40.34	2.01	1.83	373 ⁴	80 ⁴ —
6-2a	F.Grained Sandstone	1.49	-40.34/-41.59	2.02	2.00	357	85
6-2b	F.Grained Sandstone	2.10	-40.34/-41.59	2.02	2.00	358	90
6-2c	F.Grained Sandstone	2.00	-40.34/-41.59	2.02	2.00	367 ³	90 ³
6-2d	F.Grained Sandstone	1.92	-40.34/-41.59	2.03	2.00	315	75 —
6-2a 6-2e	F.Grained Sandstone	1.83	-40.34/-41.59	2.03	2.00	301	75
6-2e 6-2f	F.Grained Sandstone	1.74	-40.34/-41.59	2.03	2.00	358	85
6-21 6-3a	F. Grained Sandstone	4.53/5.15	-43.69/-44.31	2.03	2.00	363	90
	F.Grained Sandstone	4.53/5.15	-43.69/-44.31	2.03	2.00	350	85
6-3b	F.Grained Sandstone	4.53/5.15	-43.69/-44.31	2.03	2.00	383	95
6-3c	F.Grained Sandstone	5.15/5.75	-44.31/-44.91	2.04	2.40	404	95
6-4a	F.Grained Sandstone	5.15/5.75	-44.31/-44.91	2.04	2.40	381	90 —
6-4b	M-F Grained Sandstone	0.80/1.20	-41.70/-42.00	2.02	2.00	75³	20 ³
7-2	M-F Grained Sandstone	2.70/3.30	-43.60/-44.20	2.04	2.00	70	15 .
7-3a	M-F Grained Sandstone	2.70/3.30	-43.60/-44.20	2.04	2.00	63	15
7-3b	M-F Grained Sandstone	2.70/3.30	-43.60/-44.20	2.03	2.00	17	5 —
7-3c	M-F Grained Sandstone	2.70/3.30	-43.60/-44.20	2.03	2.00	32	10
7-3d	M-F Grained Sandstone	3.80/4.20	-44.70/-45.10	2.03	2.00	50	10
7-4	V.F.Grained Sandstone	0.00/0.80	-38.00/-38.80	2.00	2.00	215	55
8-1a	V.F.Grained Sandstone V.F.Grained Sandstone	0.00/0.80	-38.00/-38.80	2.00	2.00	145	35 —
8-1b	V.F.Grained Sandstone	0.00/0.80	-38.00/-38.80	2.00	2.00	59	15
8-1c	· ·	2.00/2.50	-40.00/-40.50	2.03	2.00	134	35
8-2	V.F.Grained Sandstone V.F.Grained Sandstone	4.00/4.40	-42.00/-42.40	2.03	2.00	162	40
8-3	M-F Grained Sandstone	1.1	-39.30/-40.30	2.05	2.00	15	5
9-2		2.75/3.40	-41.05/-41.70	2.05	2.00	17	5
9-3a	M-F Grained Sandstone M-F Grained Sandstone	2.75/3.40	-41.05/ -4 1.70	2.05	2.00	10	0
9-3b		2.75/3.40	-41.05/-41.70	2.05	2.00	32	10 _
9-3c	M-F Grained Sandstone M-F Grained Sandstone	4.91	-42.85/-43.30	2.03	2.00	8	0
9-4a		4.82	-42.85/-43.30	2.03	2.00	9	0 -
9-4b	M-F Grained Sandstone	4.0∠	-1 2.03/- 1 3.30	2.03		•	-

Note: 1) Test made using Portland District's (CENPP-PE-GG) point load test apparatus

²⁾ All tests made in diametral orientation unless otherwise noted.

³⁾ Invalid test; specimen did not break through both points.

⁴⁾ Axial test orientation.

DEPARTMENT OF THE ARMY

NORTH PACIFIC DIVISION LABORATORY CORPS OF ENGINEERS 1491 N.W. GRAHAM AVENUE TROUTDALE, OREGON 97060-9503

CENPD-ET-PL (1110-1-8100c)

26 Jan 95

MEMORANDUM FOR Commander, Portland District, ATTN: CENPP-PE-GG (Grubaugh/Budai)

SUBJECT: W.O. 94-497, Report of Correlation of Unconfined Compressive Strength and Point Load Index Results on Rock Core Specimens

Project:	Coos Bay Channel Explorations				
	: Strength evaluation of dredge channel bottom material				
Source of Ma	aterial: Navigation Channel, Lower Coos River, Charleston, Oregon				
Submitted by	:CENPP-PE-GG				
Date Sample	d: Date Received: 19-26 Aug 94				
Method of Te	est or Specification: CRD, ASTM, Rock Testing Handbook				
Reference:	a) DD Form 448, MIPR No. E86-94-0087, dated 29 Jul 94				
b) Telephone conversations with Messrs. Phil Grubaugh, Clayton Amundson, and Chris					
	23 Oct 94 through 23 Jan 95; wherein, additional statistical results were discussed				
	c) Our report this subject, dated 19 Sep 94; wherein, results of Point Load Index and unconfined				
	compressive strength test results were reported				
	d) Our facsimile report dated 22 Nov 94; wherein, preliminary correlation factors and other				
	statistical data were reported				
	c) Our report, this subject, dated 17 Jan 95; wherein, statistical data was reported				

- 1. Enclosed is report of point load strength tests made on nominal 2-inch diameter rock cores from the Coos Bay Channel Exploration project, revised to include correlation factors and statistical comparison data and revisions as requested by Christine Budai (CENPP-PE-GG). Included are.
- a. Enclosure 1, Table I-F, Report of Point Load Strength Tests on Nominal 2-inch Diameter Rock Cores, Field Test Data, revised to include results of Field Tests made on Drill Hole No. DH-4.
- b. Enclosure 2. Table II-L, Report of Point Load Strength Tests on Nominal 2-inch Diameter Rock Cores, Laboratory Test Data. (no revisions).
- c. Enclosure 3, Table III-S, Summary of Field and Laboratory Point Load Strength Tests made on Nominal 2-inch Diameter Rock Cores, revised to include Field Tests made on Drill Hole No. DH-4 and additional clarification of notes.
- 2. This completes all work requested.

Enclosures

Copy Furnished: CENPD-ET-P

JAMES K. HINDS, PE Deputy Director

COOS BAY CHANNEL EXPLORATION TABLE I-F

Report of Point Load Strength Tests on Nominal 2-inch Diameter Rock Cores ^{1/} Field Test Data

Drill	:	Compressive 2/	Point	•
Hole	Test	Strength,	Load	Correlation 3/
No.	No.	psi	Index, psi	Factor
DH-1 Stub	P-1		5	212.0
	P-2	••	10	106.0
	Average	1060	7.5	159.0
DH-2	P-1		45	34.7
	P-2		50	31.2
	P-3		45	34.7
•	P-4		40	39.0
	P-5		50	31.2
	Average	1560	46.0	34.2
DH-4	P-1		0	4/
	Average	260	0.0	
DH-5	P-1		25	21.2
	P-2		30	17.7
	P-3		10	53.0
	P-4		35	15.1
	P-5		10	53.0
	Average	530	22.0	32.0
DH-6	P-1		75	21.3
•	P-2		65	24.6
	P-3		60	26.7
	P-4		70	22.9
	P-5		70	22.9
	P-6		65	24.6
	P-7		75	21.3
	P-8		85	18.8
	P-9		60	26.7
	Average	1600	69.4	23.3
DH-7	P-1		5	76.0
	P-2		5 5	76.0
	P-3		5	76.0
	P-4		5	76.0
	P-5	•• ,	5	76.0
	P-6		5	76.0
	Average	380	5.0	76.0

CENPD-PE-GE-L (94-497) Table I-F (cont)

Drill Hole No.	Test No.	Compressive ^{2/} Strength, psi	Point Load Index, psi	Correlation ^{3/} Factor
DH-8	P-1		20	37.5
DITO	P-2		20	37.5
	P-3		20	37.5
	P-4		. 15	50.0
	P-5		10	75.0
	P-6		25	30.0
	P-7		25	30.0
	P-8		20	37.5
	P-9		15	50.0
	P-10		15	50.0
•	P-11		25	30.0
	P-12		15	50.0
	P-13		20	37.5
	P-14		15	50.0
	Average	750	18.6	43.0
DH-9	P-1		10	24.0
DII.	P-2	•	15	16.0
	P-3	**	10	24.0
	P-4		10	24.0
	P-5		10	24.0
	P-6		10	24.0
	P-7		15	16.0
•	P-8	••	10	24.0
	P-9		10	24.0
	P-10	,	10	24.0
	P-11		10	24.0
	P-12		10	24.0
	P-13		10	24.0
	P-14		10	24.0
	P-15		10	24.0
	P-16		10	24.0
	P-17		10	24.0
	P-18		10	24.0
	P-19		10	24.0
	P-20		10	24.0
	P-22		10	24.0
	P-23		. 5	48.0
	P-24	•	10	24.0
	P-25		10	24.0
	Average	240	10.2	24.3

CENPD-PE-GE-L (94-497) Table I-F (cont)

NOTES: 1/ Field tests performed by Portland District staff (CENPP-PE-GG)

- Average laboratory unconfined compressive strength test data, reference report dated 19 Sep 94, Table I
- 3/ Correlation Factor is the ratio of average unconfined compressive strength to Point Load Index
- Point Load Index is zero; correlation factor is undefined. Result not included in average.

COOS BAY CHANNEL EXPLORATION

TABLE II-L

Report of Point Load Strength Tests on Nominal 2-inch Diameter Rock Cores ^{1/2/} Laboratory Test Data

Drill Hole No.	Test No.	Compressive 3/ Strength, psi	Point 4/ Load Index, psi	Correlation 5/ Factor
DH-2	2-1a		60	26.0
	2-1b		65	24.0
	2-1c		65	24.0
	2-1d	•••	75 ^{7/}	20.8
	2-2		60	26.0
	2-3		85	18.4
	2-4a		80	19.5
	2-4b		65	24.0
	2-4c		70	22.3
	2-4d		55	28.4
	Average	1560	68.0	23.3
DH-4	4-1		20 7/	13.0
	Average	260	20	13.0
DH-5	5-1		35	15.1
	5-2a	••	5	106.0
	5-2b		5	106.0
	5 - 3		5 ^{6/7} /	106.0 ^{6/}
	Average	530	15.0	75.7
DH-6	6-1a		70	22.9
	6-1b		70	22.9
	6-1c		80 ^{7/}	20.0
	6-2a		85	18.8
	6 -2 b		90	17.8
	6-2c		90 ^{6/}	17.8 ^{6/}
	6-2 d		75	21.3
	6 - 2e	••	75	21.3
	6-2f		85	18.8
	6-3a	••	90	17.8
	6-3b		85	18.8
	6-3c		95	16.8
	6-4a		95	16.8
	6-4b	·	90	17.8
	Average	1600	83.5	19.4

CENPD-PE-GE-L (94-497)
Table II-L (cont)

Drill Hole No.	Test No.	Compressive 3/ Strength, psi	Point 4/ Load Index, psi	Correlation 5/ Factor
DH-7	7-2		20 6/	19.0 ^{6/}
	7-3a		15	25.3
	7 - 3b		15	25.3
	7-3c		5	76.0
	7-3d		10	38.0
	7-4		10	38.0
	Average	380	11.0	40.5
DH-8	8-1a		55	13.6
	8-1b		35	21.4
	8-1c		15	50.0
	8-2		35	21.4
	8-3		40	18.8
	Average	750	36.0	25.0
DH-9	9-2		5	48.0
•	9-3a		5	48.0
•	9 - 3b		0	8/
	9-3c		10	24.0
	9-4a		0	 8/
	9-4b		0	8/
	Average	240	3.3	40.0

NOTES: 1/ Laboratory tests performed by North Pacific Division Laboratory technicians (CENPD-PE-GE-L)

² Tests made using Portland District (CENPP-PE-GG) point load test apparatus

Average laboratory unconfined compressive strength test data, reference report dated 19 Sep 94, Table I

^{4/} All tests made in diametral orientation unless othewise ntoed

^{5/} Correlation factor is the ratio of average unconfined compressive strength to Point Load Index

^{6/} Invalid test; specimen did not break through both bearing points. Result not included in average

^{7/} Axial orientation

^{8/} Point Load Index is zero; correlation factor is undefined. Result not included in average

COOS BAY CHANNEL EXPLORATION

TABLE III-S

Summary of Field and Laboratory Point Load Strength Tests made on Nominal 2-inch Diameter Rock Cores 1/

			Field	Data			Laboratory	Data	
	- 24			Cor	relation			Con	relation
Drill Hole No.	Compressive ² Strength, psi	Point L	oad Index No. of Tests	Factor 4/	Standard Deviation, Within Hole	Point Load	No. of Tests	Factor 4/	Standard Deviation, Within Hole
DII-1 Stub	1060	7.5	2	159.0	75.0				••
DH-2	1560	46.0	5	34.2	3.2	68.0	10	23.3	3.1
DH-4	260	0.0	1	5/		20.0	1	13.0	
DH-5	530	22.0	5	32.0	19.3	15.0	3	75.7	52.5
DI-I-6	1600	69.4	9	23.3	2.6	83.5	13	19.4	2.1
DH-7	380	5.0	6	76.0	0.0	11.0	5	40.5	20.8
DH-8	750	18.6	14	43.0	12.2	36.0	5	25.0	14.3
DH-9	240	10.2	24	24.3	5.5	3.3	6	40.0	13.9
SUMMARY: Average:									
High:	800	25.5		56.0		33.8		33.8	
Low:	1600	69.4		159.0		83.5	••	75.7	
Standard Deviation:	240	5.0		23.3		3.3		13.0	
	553	23.8	••	48.8	-	30.7		21.1	

NOTES: " Tests performed by Portland District Staff (field) and North Pacific Division Laboratory Technicians (laboratory)

² Average laboratory unconfined compressive strength test data, reference report dated 19 Sep 94, Table I

^{3/} Average Point Load Index as reported on Tables I-F and II-L.

Average Correlation Factor as reported on Tables I-F and II-L.

⁵/ Point Load Index is zero, correlation factor is undefined.

APPENDIX E – Kenneth L. Finger, Ph.D., Consulting Paleontologist, Micropaleontological Examination

18208 Judy St., Castro Valley, CA 94546-2306 510.305.1080 klfpaleo@comcast.net

September 28, 2016

Kyle Wolfe GRI 9750 SW Nimbus Avenue Beaverton, OR 97008

Re: Micropaleontological Examination of 10 Coos Bay Core Samples

Dear Mr. Wolfe,

As per your request, I have processed and examined the 10 Coos Bay core samples for micropaleontological evidence that may help to differentiate the geologic units represented, as all of the samples are mudstones (silt + clay) that are dark brown when moist and a lighter buff when dry.

Geologic Units

The Tertiary sequence in the Coos Bay area consists of the Eocene Coaledo and Basten-dorff formations, and the Miocene Empire formation. Diller (1899) named the Coaledo Formation for a series of predominantly nonmarine, coal-bearing, late Eocene strata exposed a few miles south of Coos Bay. Turner (1938) proposed a division of the Coaledo into lower and upper sandstone members separated by a middle unit of marine mudstone. The overlying Bastendorff Formation consists of thinly laminated dark-brown siltstones and mudstones that weather a light tan. It is unconformable with the Miocene Empire Formation, which consists of a basal conglomerate and sandstones (Addicott, 1983).

Previous Microfaunal Studies

The Eocene foraminiferal fauna of the Coaledo and Bastendorff formations at Coos Bay were first documented by Detling (1946). Her checklist reveals that the two units have similar assemblages. Although she recorded several species in only one of the two units, her study was not as comprehensive as that of Rooth (1974), who researched the microfauna from coastal outcrops of the two units just south of Coos Bay. Rooth also collected samples inland but they yielded molds and casts of foraminifers and radiolarians that, for the most part, were very difficult to identify. Rooth (1972) reported that foraminifers are very rare in the sandstones of the lower & upper Coaledo, but abundant in the middle Coaledo, which he interpreted as probably deposited at upper bathyal to outer neritic depths. In contrast, he also interpreted the high numbers of radiolarians and planktonic foraminifers in the Bastendorff Formation as evidence of deep-water deposition in a basin influenced by an open-ocean, mid-latitude water mass, rather than on the continental

shelf or in a restricted embayment. Rau (1970) noted that there was no foraminiferal data from the Miocene Empire Formation.

Methodology

Samples were processed by first breaking the core samples into several pieces, immersion of the rocks in water with a deflocculent (Calgon) for a minimum of 24 hours with intermittent heating to near-boiling, and washing the disaggregated sediment over a 230-micron sieve. The remaining fraction was then filtered and oven-dried. Hydrogen peroxide was added to one sample (B-33) that was highly indurated (couldn't be broken with a rock hammer), but with little success. The dried residue was then sieved through a stack of 60, 100, and 200 micron screens. Each fraction was then sprinkled onto a micropaleon-tological picking tray and examined under the stereomicroscope. Specimens were picked onto micropaleontological slides for subsequent identification. For comparative study, I first perused approximately 200 specimen and assemblage slides from both the Coaledo and Bastendorff formations that are in the microfossil slide collection at the University of California Museum of Paleontology (UCMP).

Results

Disaggregation of the 10 core samples varied from nearly nothing to partial to extensive. Sufficient amounts of washed residue were obtained from nine of the core samples, the exception being B-33, which is so highly indurated that it cannot be fragmented with a rock hammer. As shown in the table below, foraminifers were common in only two of the core samples (B-21, B-23), but few specimens were preserved well enough for positive identification. Just a few specimens were found in four other samples, and none were recovered from the remaining four samples.

Sample	Forams	Paleodepth	Geologic unit
B-33	-	-	-
B-30	Rare	shallow	Empire
B-29	Few	deep	-
B-27	Few	deep	-
B-24	None	-	-
B-23	Common	deep	Bastendorff
B-22	None	-	-
B-21	Common	deep	Bastendorff
B-16	Few	deep	-
B-15	None	-	-

Conclusions

Four of the assemblages (B-21, B-23, B-27, B-29) have elements of a deep-water fauna characterized by *Plectofondicularia packardi*, *Stilostomella* spp., and radiolarians. The two richest assemblages also yielded multiple specimens of *Spiroloculina wilcoxensis*, a

species that Detling found only in the Bastendorff Formation. In contrast, B-30 only yielded *Rosalina ornatissima* and *Nonion florense*, which suggests the shallow marine environment of the Empire Formation.

Sincerely,

References Cited

- Addicott, W.O., 1983. Biostratigraphy of the marine Neogene sequence at Cape Blanco, southwestern Oregon. US Geological Survey Professional Paper 774-C: G1–G20.
- Bandy, O.L., 1944, Eocene foraminifera from Cape Blanco, Oregon. Journal of Paleontology 18: 366–377.
- Detling, M.R., 1946, Foraminifera of the Coos Bay Lower Tertiary, Coos County, Oregon. Journal of Paleontology 20: 348–361.
- Diller, J.S., 1899, Coos Bay coal field, Oregon: US. Geological Survey, 19th Annual Report, pt. 3: 309–370.
- Rau, W.W., 1970, Foraminifera, stratigraphy, and paleoecology of the Quinault Formation, Point Grenville-Raft River coastal area, Washington: Washington Division of Mines and Geology Bulletin 62, 40 pp.
- Rooth, G, H., 1974, Biostratigraphy and paleoecology of the Coaledo and Bastendorff Formations, southwestern Oregon. PhD dissertation, Oregon State University, 270 pp.
- Turner, F.E., 1938, Stratigraphy and Mollusca of the Eocene of western Oregon: Geological Society of America, Special Paper 10, 130 pp.